

 16

Sources for more information

Do you have questions about Condor-G?

There is a free mailing list for Condor users (not just Condor-G users) that you
can join. To subscribe to condor-users send a message to major-
domo@cs.wisc.edu with the body of:

subscribe condor-users

To unsubscribe from condor-users send a message to majordomo@cs.wisc.edu
with the body of:

unsubscribe condor-users

You can send email to the Condor developers to ask for help. Send your email to
condor-admin@cs.wisc.edu. We will do the best we can to answer your ques-
tion, but we do not guarantee an answer. We are pretty good though.

Using Condor-G Effectively
A discussion by Alain Roy

Version 4
15-Apr-2004

This document may be found online:
http://www.cs.wisc.edu/~roy/effective_condorg

Send comments about this document to:
roy@cs.wisc.edu

 2

Table of Contents

Introduction... 3
Advanced condor_q usage .. 6
Understanding jobs on hold .. 8
Scalability: Linux configuration ... 10
Use the GridMonitor to increase scalability 14
Miscellaneous Hints.. 15

 15

Miscellaneous Hints

Use large jobs
Think carefully about what kind of jobs you submit to a grid. Some people sub-
mit thousands of jobs that each take 30 seconds to run, then wonder why they
see poor performance. Each job submission has a scheduling overhead, and you
need to submit jobs that are sufficiently long to make this overhead worthwhile.
Instead of submitting 1,000 jobs of 30 seconds each, try submitting 10 jobs of
3,000 seconds each by combining the work into larger portions. You will see
significantly better throughput.

Synchronized clocks
Keep your clocks synchronized to standard time, and ensure the time zone is
correct. If the clock on your submission machine is not close to the time on the
gatekeeper host, you are likely to have security failures, because GSI expects
synchronized clocks.

Be prepared for failure
We have worked very hard to make Condor-G as bulletproof as possible: it
should deal well in the face of power outages, computer crashes, network con-
gestion, disappearing file systems and more. But other components will fail be-
cause grid jobs live in a hostile environment, and these problems will occur in
greater frequency than you would find in a local environment. When you build
grid applications, accept that failures will happen and be flexible.

Forcing jobs to be removed
Sometimes, jobs cannot be removed with condor_rm. Condor-G puts them into
the X state while trying to tell the remote grid site to clean up the job. This may
take a very long time, and it may hang in some conditions, beyond Condor-G’s
control. Use “condor_rm -forcex” to forcibly remove the jobs. Note that this
may leave orphaned jobs on the remote grid site.

Pack your bags: Bring your software with you
Many people find it simplest to pre-stage their software on a grid site, then use
grid jobs to start up that software. This is fragile, prone to error, and will limit
the number of grid sites that you can use.

Instead, submit a grid job that installs your software, or transfer it with every
job. You will be sure that you have the correct version and that it is properly
installed. If someone offers you a new grid site, you can take advantage of it
with minimal effort. This democratization of computing is the greatest potential
for grids: if you do not have access to lots of local computing power but you are
prepared to use any grid sites that may be available, you can benefit.

 14

Use the GridMonitor to increase scalability

The GridMonitor helps to make Condor-G jobs more scalable. In our experi-
ence, submitting large numbers of Globus jobs to a single gatekeeper can fail
due to the load on the gatekeeper. In Globus 2.x, each job submission creates a
process—whether the job is actively running or not—and that process, called the
jobmanager, queries the underlying batch system every ten seconds. When sub-
mitting 300 simultaneous jobs, we have noticed a system load in excess of 400.

The Condor-G GridMonitor decreases this load in some circumstances by forc-
ing Globus to not run the jobmanager when a job is not actively being run by the
batch system. If you submit 300 jobs that the batch system can execute simulta-
neously, the GridMonitor will not help. If you submit 300 jobs that run for a few
seconds each, the GridMonitor will not help. However, if you submit 300 jobs to
a system that can run tens of jobs and they are long-running, you may see sig-
nificant improvements in job throughput.

The GridMonitor does not help while jobs are running because Condor-G relies
on the Globus jobmanager to stream standard output and error back. You can
disable streaming by adding the following commands to your submit file:

stream_output = false
stream_error = false

The files will be returned when your job finishes, and now the GridMonitor can
replace the jobmanager for the entire time the job runs, except for a brief time at
the end of the job’s execution.

To use the GridMonitor, you must add two variables to your Condor configura-
tion, then do a condor_reconfig:

GRID_MONITOR = $(SBIN)/grid_monitor.sh
ENABLE_GRID_MONITOR = TRUE

The first of these is probably already in your condor_config file, but the second
one probably is not. When you make this change and submit a single job, you
will see no effect, but only when you submit many jobs.

1

2

 3

Introduction

We hope that you can use the information in this booklet to use Condor-G effec-
tively. Although the basics of using Condor-G are not hard, there are a lot of tips
and tricks that can help you to use Condor-G better.

This booklet assumes that you already know the basics of using Condor-G. If
you do not, please review the Condor manual, particularly Chapter 5, Grid Com-
puting. The Condor manual can be found online at the Condor web site:

http://www.cs.wisc.edu/condor

If you have comments on this booklet, or suggestions for how to make it better,
please let us know. Send email to the Condor team at:

condor-admin@cs.wisc.edu

 4

Always specify a log file in your submit file.
(With a note about idle jobs)

Condor-G tells you important information in log files. For example, look at this
submit file:

 Universe = Globus
 Globusscheduler = beak.cs.wisc.edu
 Executable = analysis
 Arguments = “beta 10”
 Input = analysis.in
 Output = analysis.out
 Log = analysis.log
 Queue

When your job is submitted, Condor-G will create a file called analysis.log that
shows you what happened to your job, and when it happened. Sometimes your
job looks idle but there is a problem listed in the submit file. For example, I sub-
mitted a job, but spelled the hostname “beak” incorrectly as “beakk”. The job
appeared idle, but Condor-G gave extra information in the log file:

(Note that the comment lines beginning with a # are comments by me—they are
not in the log file.)

000 (018.000.000) 10/13 15:15:31 Job submitted from host:
<128.105.121.21:55506>
...
Aha—this is our problem!
020 (018.000.000) 10/13 15:15:35 Detected Down Globus Resource
 RM-Contact: beakk.cs.wisc.edu

When this happens, Condor-G cannot tell the difference between a misspelled
host and a host that is actually down. (There may be a transient DNS failure that
looks like a misspelled host error.) Condor-G will try to submit my job again
later, but it remains idle for now. By looking in the log file, you can see what
happened. To fix the problem, I used condor_rm to remove the job, edited the
submit file to have the correct name, and resubmitted the job. Now in the log file
I saw:

This was the above failed job.
009 (018.000.000) 10/13 15:22:26 Job was aborted by the user.
 via condor_rm (by user roy)
...
I resubmitted the job 9 seconds later
000 (019.000.000) 10/13 15:22:37 Job submitted from host:
<128.105.121.21:55506>
...

1

2

3

 13

The Globus Jobmanager Log File (gram_job_mgr_<number>.log)
- Useful for job execution problems
- Located on the remote system

After the gatekeeper runs your job, it creates a jobmanager. The jobmanager
submits your job to the local batch system and monitors the job while it is in the
queue. While the jobmanager runs, it produces a log file which is either located
in the user’s home directory or in /tmp. This log file often has interesting error
messages in it. For instance, when the jobmanager fails to create a scratch direc-
tory for a job to store its files in, the log file contains:

11/10 12:15:10 Job Manager State Machine (entering):
GLOBUS_GRAM_JOB_MANAGER_STATE_MAKE_SCRATCHDIR
11/10 12:15:10 Failed to create scratch dir

It is hard to document the wide variety of errors you may see in this log file, but
it is often a treasure trove for problem solving.

The Condor-G GridManager log (GridmanagerLog.username)
- Useful for Globus interaction problems
- Located on the submit system

Condor-G records problems with its interaction with Globus in the Gridmanager
log files. These are normally either located in /tmp or the GridLogs subdirectory
of Condor’s log directory. If you do not have access to the remote site’s log
files, this may help you debug more problems. If you are having problems and
the log is not showing you enough information, you can increase the amount of
debugging. Edit your Condor configuration file to set:

GRIDMANAGER_DEBUG = D_FULLDEBUG

Then execute “condor_reconfig” to tell Condor to pay attention to this change in
the configuration. This will give you quite a bit more debugging information in
the log file.

3

4

 12

Problem Solving & Log Files

As much as we would like to tell you that you will never encounter problems,
you will. Condor-G does a great deal to deal with problems. But how do you
solve the problems that cause jobs to be put on hold, or other more serious prob-
lems?

There are three log files that you should know about, in addition to the log file
for your job. Each of these has information that will help you debug problems.

The Globus Gatekeeper Log File (globus-gatekeeper.log)
- Useful for authentication, authorization, and problems starting jobmanagers
- Located on the remote sysytem
Every time you submit a job to a Globus site, the Globus gatekeeper approves
your job’s request and creates a jobmanager to handle your job’s request. The
gatekeeper creates a log file of everything that it does, and it will often help you.
For instance, in your job log file, you might see:

018 (091.000.000) 11/10 18:06:26 Globus job submission failed!
 Reason: 7 authentication with the remote server failed

On the remote server, you can look at the gatekeeper log. It will be in
$GLOBUS_LOCATION/var/globus-gatekeeper.log. In this case, I can see:

Notice: 5: Authenticated globus user:
/DC=org/DC=doegrids/OU=People/CN=Alain Roy 424511
Failure: globus_gss_assist_gridmap() failed authorization. rc=1

This tells us two things: it recognized my user certificate, but it failed to author-
ize me. The fix for this is to add me to the grid-mapfile. In this case, looking in
the log file did not add much to our understanding over the error message that
Condor-G gave us, but in some cases the error messages can be rather enlighten-
ing. Error messages that you find can help you debug problems with authentica-
tion, authorization, and creation of the job manager, but will rarely help you
with problems that occur while your job is running. If you do not find any record
in the gatekeeper log, then the gatekeeper may not have started. If you have ac-
cess, look in the system’s log files to see if you can see why it did not start.

1

2

 5

Here we see that the job has been accepted by Globus.
You will probably never need the JM-Contact.
017 (019.000.000) 10/13 15:22:50 Job submitted to Globus
 RM-Contact: beak.cs.wisc.edu
 JM-Contact:
https://beak.cs.wisc.edu:47818/22589/1066076561/
 Can-Restart-JM: 1
...
001 (019.000.000) 10/13 15:22:50 Job executing on host:
beak.cs.wisc.edu
...
The job has finished. Unfortunately, Condor-G does not
know the details of the job, so they are all zeros.
More information will be available in future versions of
Condor-G
005 (019.000.000) 10/13 15:22:55 Job terminated.
 (1) Normal termination (return value 0)
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage
 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
 0 - Total Bytes Sent By Job
 0 - Total Bytes Received By Job
...

Without the log file, I would have not learned any of this information. You
should always have a log file for every job you submit to Condor-G.

Note that you can have multiple jobs using the same log file. You can tell which
job is associated with each message by examining the numbers in parentheses.
For example, the last message above has (019.000.000) in it. That means cluster
19, process 0, sub-process 0. In the condor_q display, you would see it listed as
19.0.

 6

Advanced condor_q usage

When you submit a Condor-G job, you probably know that you can get informa-
tion about the job using condor_q:

% condor_q
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
26.0 roy 10/13 20:08 0+00:00:00 I 0 0.0 sleep 120

1 jobs; 1 idle, 0 running, 0 held

Many people are unaware that they can get Globus specific information from
condor_q:

% condor_q –globus
ID OWNER STATUS MANAGER HOST EXECUTABLE
 26.0 roy UNSUBMITTED fork beak.cs.wisc.edu /bin/sleep

This tells you useful information that condor_q without the –globus argument
does not tell you:

• The job has not yet been submitted to Globus.
• The job is going to the beak.cs.wisc.edu Globus gatekeeper.
• The job is using the Globus fork job manager. (Instead of a batch sys-

tem job manager, such as Condor or PBS.) Note that this is a bit of a
guess because Condor-G has to guess from the name of the jobman-
ager, and it may be wrong. For example, it guesses the a plain “job-
manager” is a fork jobmanager. This is usually correct, but different
sites could change that default.

Many people quite reasonably expect “condor_q –analyze” to return meaningful
results. Unfortunately, it does not tell you anything useful for Condor-G jobs
unless your Condor-G jobs use matchmaking. This is a new feature in Condor-
G, so most of you are not using it yet. Improving the “-analyze” option is some-
thing the Condor team hopes to improve in future releases.

You can find out all sorts of details if you ask condor_q nicely:

% condor_q –l

MyType = "Job"
TargetType = "Machine"
ClusterId = 26
QDate = 1066093717
...

1

2

3

 11

Another way to increase the limit is to become root, increase the limit, switch
back the user, and start the program you want it increased for:

su - root
ulimit -n 16384 # if root uses sh
limit descriptors 16384 # if root uses csh
su - your_user_name
program_to_run, like condor_master

Local port range
When you submit lots of jobs, you might run out of ports. Condor-G uses ran-
domly assigned ports from a limited range. By default that range is 1024 to
4999, allowing 3975 simultaneous outgoing connections. We have found it im-
portant to increase this for Condor-G submit nodes. You can find the current
range with:

cat /proc/sys/net/ipv4/ip_local_port_range

You can set the range with:

echo 1024 65535 > /proc/sys/net/ipv4/ip_local_port_range

4

5

6

 10

Scalability: Linux configuration
 (This is extracted from http://www.cs.wisc.edu/condor/condorg/linux_scalability.html)

Doing large scale grid work, we regularly press various limits of Linux and
other operating systems. If you submit lots of jobs with Condor-G you will also
bump into these limits. We will discuss some of these limits for Linux.

At several points we suggest making changes to the Linux kernel’s configura-
tion by echoing data into the /proc filesystem. These changes are transient and
the system will reset to the default values on a reboot. As a result, you will want
to place these changes somewhere where they will be automatically reapplied on
reboot. On many Linux systems, you can use the /etc/rc.d/rc.local script to do
this. Depending on your particular configuration, you might also be able to edit
/etc/sysctl.conf.

System-wide file descriptor limit
Linux has a limit on the concurrently open file descriptors throughout the sys-
tem. It defaults to 8192. We have found it important to increase this for Globus
gatekeeper nodes and Condor-G submit nodes.

To see the current limit:

% cat /proc/sys/fs/file-max

To set the limit to 32768, as root do:

% echo 32768 > /proc/sys/fs/file-max

Per-process file descriptor limit
Each user has per-process file descriptor limits. It defaults to 1024, but can be
increased to the system’s hard limit. Unfortunately the hard limit is also 1024.
We have found it important to increase this when starting the condor_master for
Condor-G.

You can check the limit with:

ulimit -n # sh
limit descriptors # csh

You may be able to give each user a larger limit in the /etc/security/limits.conf
file. This will only apply to Condor daemons started as the user in question. At
the moment (October 2003) Condor will ignore these limits when run as root.

1

2

3

 7

x509userproxysubject =
"/DC=org/DC=doegrids/OU=People/CN=Alain_Roy_424511/CN=proxy"
x509userproxy = "/tmp/x509up_u8471"
GlobusResource = "beak.cs.wisc.edu"
GlobusStatus = 32
WantClaiming = FALSE
NumGlobusSubmits = 0
GlobusResubmit = FALSE
GlobusContactString =
"https://beak.cs.wisc.edu:53044/30086/1066093721/"

The information you see here is a ClassAd. ClassAds are essentially lists of
name-value pairs. Details about ClassAds are in the manual. The ClassAd listed
here is incomplete, to simplify this discussion. The information in the ClassAd
can be surprisingly useful, because you can customize the output that condor_q
reports. For instance, suppose you submitted jobs to two different grid sites.
Condor_q would show you:

% condor_q -globus
ID OWNER STATUS MANAGER HOST EXECUTABLE
 27.0 roy ACTIVE fork beak.cs.wisc.edu /bin/sleep
 28.0 roy UNSUBMITTED fork omega.cs.wisc.edu /bin/sleep

You can constrain condor_q to show you just the jobs submitted to beak: (This
command is all on one line)

% condor_q -globus -constraint 'GlobusResource ==
"beak.cs.wisc.edu"'

chopin.cs.wisc.edu
 ID OWNER STATUS MANAGER HOST EXECUTABLE
 27.0 roy ACTIVE fork beak.cs.wisc.edu /bin/sleep

You can constrain based on any attribute in the ClassAd. See the condor_status
manual page for more information about using constraints.

4

5

 8

Understanding jobs on hold

Condor-G will put jobs on hold when it encounters Globus errors. At first, this
may seem surprising, but it is useful to you and your jobs. In earlier versions,
when errors were encountered Condor-G would terminate the job and record it
in the log file. Condor-G now places your job on hold so that you can attempt to
fix the error, then tell Condor-G to restart the job with the condor_release com-
mand.

For example, if you submit a job that requires an executable pre-staged on a
remote grid site, but the executable does not exist, your job will be placed on
hold. (Normally, executables are always transferred, so we do not rely on them
being on the remote grid site, but in this example we specified “trans-
fer_executable = false” to override that behavior.)

Submit file
executable = /bin/doesnt_exist
transfer_executable = false
arguments = 120
globusscheduler = beak.cs.wisc.edu
universe = globus
output = noexec.out
log = noexec.log
queue

% condor_q
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
29.0 roy 10/13 20:28 0+00:00:00 H 0 0.0 doesnt_exist 120

1 jobs; 0 idle, 0 running, 1 held

Notice that the job is held. This means that it will not run or exit, unless you
intervene. But why is it held? Ask condor_q with the -hold option:

% condor_q -hold
ID OWNER HELD_SINCE HOLD_REASON
29.0 roy 10/13 20:28 Globus error 5: the executable does
not exi

1 jobs; 0 idle, 0 running, 1 held

Condor_q is mostly helpful here: we can see most of the reason that the job is on
hold. The executable does not “exi”—Condor-G chopped off the text. You can
probably figure out the problem, but your knowledge of condor_q that you ac-
quired earlier will aid you, if it is unclear:

% condor_q -l | grep HoldReason

1

2

3

4

 9

HoldReason = "Globus error 5: the executable does not ex-
ist"
HoldReasonCode = 2
HoldReasonSubCode = 5

You can now fix the problem (put the executable into place) and use con-
dor_release to restart the job. If you cannot fix the problem, you can use con-
dor_rm to remove the job.

Condor-G will put jobs on holds for several reasons, including:

• Globus GRAM errors, including a missing executable.
• Requesting transfer of an output file that is not created.
• Use of the periodic_hold expression. This lets you automatically put a

job on hold when something happens, and you can define the some-
thing. See the condor_submit manual page for more information.

