
THE UNIVERSITY OF CHICAGO

END-TO-END QUALITY OF SERVICE FOR HIGH-END APPLICATIONS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

ALAIN ROY

CHICAGO, ILLINOIS

AUGUST 2001

Dedicated to my wonderful wife, Annalisa.

ABSTRACT

Many computing applications demonstrate increasingly voracious appetites, consuming

ever more resources. When high performance applications are required to share networks,

computers, and disks with other applications, their performance suffers. When the re-

sources cannot be increased, applications must either adapt or the resources must guarantee

better performance to some applications. This latter solution is known as quality of service,

or QoS.

This dissertation presents the design and implementation of an architecture to provide

end-to-end QoS for high-end applications—those applications consuming a variety of re-

sources and expecting high-performance. End-to-end QoS involves not only traditional

network QoS, but other types of QoS, such as CPU and disk, to ensure that the application

receives the performance it needs. The major contribution of this work is the design of an

innovative and extensible architecture which provides uniform access to different types of

QoS.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Ian Foster, who was amazingly patient, helpful, and

supportive and my other Ph.D. committee members, Mike O’Donnell and Klara Nahrstedt

who were dedicated and insightful. This dissertation would be a mere shadow of what it is

without Volker Sander’s amazing technical assistance. Linda Winkler was always helpful

when I needed help with GARNET, our QoS testbed. Steve Tuecke, Karl Czajkowski, and

Carl Kesselman assisted greatly in the early design of GARA. Bob Olson was always ready

to help demonstrate GARA. Without Nick Karonis and Brian Toonen, my extensions to

MPI to support QoS would never have been accomplished. Jenny Schopf provided support

and office space which not only saved me many hours of commuting, but offered a fun

environment. Bob Brown helped me to see the magic in life. My parents, Michel and Judy

Roy, kept me going when my resolve faltered. My wife Annalisa deserves more thanks than

I know how to express. And to all of my friends, relatives, co-workers at Argonne National

Laboratory, and support staff at the University of Chicago, Argonne, and Northwestern—

thank you for all of your help through the years.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . viii

LIST OF TABLES . x

1 INTRODUCTION . 1

2 BACKGROUND . 3
2.1 Resources . 3
2.2 Reservations . 4
2.3 Quality of service . 5

2.3.1 Network quality of service . 5
2.3.2 CPU quality of service . 6
2.3.3 Storage quality of service . 6

2.4 High-end applications . 6
2.4.1 Distance visualization of large data sets 7
2.4.2 Large data transfers . 7
2.4.3 High-end collaborative environments 7

2.5 Providing QoS to high-end applications 8
2.5.1 Heterogeneous network flows . 8
2.5.2 High bandwidth flows . 8
2.5.3 Need for end-to-end QoS . 8
2.5.4 Need for application-level control 9
2.5.5 Need for advance reservation . 9

2.6 The solution . 9

3 RELATED WORK . 11
3.1 OMEGA . 11
3.2 QoS-A . 13
3.3 2K and2KQ . 14
3.4 QuO . 14

v

4 GARA, A FRAMEWORK FOR USING QUALITY OF SERVICE 16
4.1 High-level overview . 16
4.2 Main features of GARA . 17
4.3 GARA architecture . 18

4.3.1 High-level services layer . 18
4.3.2 Arbitration layer . 20
4.3.3 Resource management layer . 26

4.4 Summary . 27
4.5 Historical development of GARA and design decisions 27

5 RESOURCE MANAGERS . 29
5.1 Purpose of a resource manager . 29

5.1.1 Kernel . 30
5.1.2 Admission control . 30
5.1.3 Advance reservations . 31
5.1.4 Bookkeeping and publication . 31
5.1.5 Resource Control . 31

5.2 Implementation of resource managers . 32
5.3 Design of a resource manager . 32

5.3.1 Actuators: online control . 34
5.3.2 Sensors . 35
5.3.3 Decision procedures . 35

6 IMPLEMENTATION . 37
6.1 Implementation overview . 37
6.2 Client interaction with GARA . 38
6.3 Gatekeeper . 39
6.4 GARA service . 40
6.5 Resource managers . 40

6.5.1 Network QoS resource manager 41
6.5.2 PBS resource manager . 52
6.5.3 DSRT resource manager . 55
6.5.4 Other resource managers . 57
6.5.5 Notes on resource manager functionality 59

vi

7 VERIFICATION . 60
7.1 Modular design . 60
7.2 Feedback mechanisms . 62

7.2.1 Learning bandwidth in applications 63
7.2.2 Bulk data transfers . 66
7.2.3 Other feedback services . 69

7.3 Uniform interface and layering . 70
7.3.1 The need for co-reservation . 71
7.3.2 A generic co-reservation agent . 73
7.3.3 Multi-domain network reservations 76

7.4 High-level programming . 79
7.4.1 Quality of service and MPI . 80
7.4.2 MPICH-GQ . 82
7.4.3 Experimental results . 86

8 FUTURE WORK AND CONCLUSIONS . 95
8.1 Future Work . 95

8.1.1 New types of QoS . 95
8.1.2 Enhanced co-reservation . 96
8.1.3 Policy . 96
8.1.4 Use in the real world . 96

8.2 Conclusions . 97

A THE GARA API . 99
A.1 Using GARA . 99

A.1.1 Initializing GARA . 99
A.1.2 Describing a reservation request 99
A.1.3 Creating a reservation . 100
A.1.4 Modifying a reservation . 102
A.1.5 Querying a reservation . 102
A.1.6 Binding a reservation . 103
A.1.7 Using callbacks . 104
A.1.8 Canceling a reservation . 106
A.1.9 Deactivating GARA . 106

A.2 GARA reference . 106
A.2.1 Constants . 106
A.2.2 Data structures . 110
A.2.3 Functions . 111

A.3 Example program using GARA . 115

REFERENCES . 118

vii

LIST OF FIGURES

3.1 The OMEGA QoS Broker . 12
3.2 QoS-A . 13

4.1 Using GARA . 17
4.2 Abstract GARA system architecture . 19

5.1 Abstract view of GARA resource managers 29
5.2 Sensors, actuators, and decision procedures 34

6.1 GARA implementation overview . 38
6.2 Basic differentiated services . 43
6.3 The GARNET testbed . 46
6.4 A single UDP reservation . 49
6.5 Five simultaneous UDP reservations . 50
6.6 Under-reservation for a TCP stream . 51
6.7 A single TCP reservation . 52
6.8 Five simultaneous TCP reservations . 53
6.9 PBS demo . 54
6.10 GARA’s interaction with DSRT . 56
6.11 DSRT experiment . 58

7.1 Adaptation of UDP flows . 65
7.2 Adaptation of TCP flows . 66
7.3 Bulk transfer in GARNET . 68
7.4 Bulk transfer in the wide area . 69
7.5 An application that could benefit from co-reservation 71
7.6 Combining CPU and network reservations 72
7.7 Co-reservation needs as provided to the co-reservation agent 75
7.8 Simple network co-reservation . 77
7.9 The difficulty with simple network co-reservation 78
7.10 The effects of under-reservation for a TCP flow 81
7.11 The MPICH-GQ Architecture . 83
7.12 MPI QoS parameters . 85
7.13 Reservations for the MPI ping-pong application 87
7.14 Reservations for the MPI visualization application 88
7.15 TCP traces showing burstiness . 91

viii

7.16 CPU reservation for the MPI visualization application 92
7.17 CPU and network reservations for the MPI visualization application 93
7.18 MPICH-GQ Demonstartion . 94

ix

LIST OF TABLES

7.1 Burstiness and token buckets . 90

A.1 RSL attributes . 101

x

CHAPTER 1

INTRODUCTION

Many computing applications demonstrate increasingly voracious appetites, consuming

ever more resources. While USENET consumed large amounts of bandwidth in the 1980’s,

multimedia web downloads consume far larger amounts of bandwidth today. Similarly, sci-

entific programs used to measure their speed in megaflops, but now strive for teraflops and

process terabytes instead of gigabytes.

Just as data seems to expand to fill any size hard drive, today’s most demanding applica-

tions strain the capacities of the networks, computers, and storage devices they use. When

these applications must share their resources with other applications, they may be unable

to perform to the satisfaction of their users. The problem here is twofold: the resources

are limited and the amount of a resource available to a particular application fluctuates

depending on conditions beyond its control.

If an application does not have enough resources available to meet its performance

needs, the only solutions are either to increase the capacity of the resources or to decrease

the need for the resources. However, sometimes resources have sufficient capacity for one

application, but the actual capacity available to that application fluctuates because the re-

sources are being shared with other applications. The most common example of this is a

network, which is almost always shared between multiple applications. If we have such a

shared resource and we cannot reliably get a constant and sufficient service from it, there

are two general strategies we can use. First, an application can adapt to the amount that is

available. For example, a video streaming application may decrease the resolution of the

video it sends when less bandwidth is available. Second, the resource may provide a guar-

antee that it will provide a certain quality, such as a specific bandwidth, to the application.

When a resource is able to offer such a guarantee, it is said to offerquality of service, or

QoS.

1

2

Applications have varying resource requirements. Applications that are relatively unde-

manding are often capable of easily adapting or may need only a single type of QoS, such

as network QoS. On the other hand,high-endapplications are very demanding and run in

complex environments. They may require combinations of several types of QoS includ-

ing network, CPU, and storage. Managing multiple resources with QoS can be difficult for

applications because each type of QoS is typically controlled by a completely different sys-

tem with different interfaces, capabilities, and behavior. Yet this management is essential,

because without combining different types of QoS, applications may fail to operate well

enough to meet users’ expectations. Therefore, a major goal of this work is to make it easy

for applications to work with different types of QoS:

It is our goal to provide useful, convenient QoS to high-end applications.

The rest of this dissertation describes this goal in more depth, and our design and im-

plementation of a system to accomplish that goal.

The main contribution of this dissertation is a modular and extensible QoS system archi-

tecture (GARA) that integrates different QoS mechanisms. This architecture is not merely

a simple blending of mechanisms, but an interesting contribution in its own right.

This dissertation also describes two other contributions. First, we have provided signif-

icant examples of how to simplify access to QoS: We have extended an implementation of

the widely-used Message Passing Interface (MPI) to allow programmers to easily request

network QoS, and we have demonstrated methods of combining multiple reservations. Sec-

ond, we have added to the understanding of mechanisms that can be used to provide QoS,

particularly for network QoS.

The combination of these three contributions demonstrates that it is possible to provide

a unified QoS system that is convenient for programmers to use and provides a useful

capability to high-end applications.

There are many difficulties along the path to this goal. In the next chapter, we explore

what this goal means in depth: what QoS is, what high-end applications are, and what

makes QoS difficult for high-end applications.

CHAPTER 2

BACKGROUND

Recall that we stated in the previous chapter that our goal is to provide “useful, convenient

QoS to high-end applications,” and that QoS is a guarantee from a resource to provide a

particular quality, such as bandwidth, to an application. We now look at this goal in more

depth by discussing resources; reservations, which encapsulate QoS guarantees; types of

QoS; high-end applications; and why high-end applications make QoS more complicated.

2.1 Resources

We begin by defining what a resource is. Pinning down an exact meaning for a resource is

challenging, but the definition provided by [54] will serve our needs well:

...we will refer to the objects granted [by the operating system] as resources. A

resource can be a hardware device (e.g., a tape drive) or a piece of information

(e.g., a locked record in a data base).

By this definition, all of the following are resources:

• an entire computer

• a single CPU

• a network

• a network interface

• a storage system

• a hardware graphics pipeline

3

4

• a database record

• a software license

• a portion of memory

We consider all of these resources to be candidates for QoS reservations.

2.2 Reservations

When an application wants a resource to provide QoS, it usually has to not only ask for the

quality that is needed, but must also specify at what time the QoS is needed. Areservation

is a guarantee for a certain level of quality from a resource for a particular time period.

In much of the earlier QoS research, reservations did not match the non-computer sci-

entist’s view of a reservation. When I make a reservation at a hotel, I normally make it

before I arrive at the hotel, and I inform the hotel how long I will stay. While I can make a

reservation when I show up at the hotel, I run a greater risk of being turned down. However,

many network reservation systems [18, 4] provide onlyimmediate reservations. That is,

an application could only make a reservation that would begin at the same time the request

was made, and the reservation lasted indefinitely, not for a specific duration.

In contrast to immediate reservations, a QoS system could also provide advance reser-

vations, in which the reservation is requested before it is needed, as in our hotel example.

Advance reservations are more demanding on the underlying system since they require a

larger number of reservations to be tracked. However, they provide important function-

ality for people who wish to plan their resource usage. Most people would be unhappy

to show up for an important software demonstration, only to find that they are unable to

use the computers or networks involved in the demonstration. They would rather make a

reservation a week in advance for the computers and networks they will need, and if the

reservation fails they have time to find alternative resources.

Although immediate reservations were described as having indefinite duration, we can

also have immediate reservations with definite duration. In general, we can categorize the

time-related aspects of reservations according to (a) when the reservation is made (imme-

diate or in advance), and (b) how long it is made for (a definite time period, or an indefinite

5

time period). This categorization yields four distinct combinations of reservation. In most

QoS architectures, reservations are immediate and indefinite.

In practice, it is difficult to have a system that provides both advance and indefinite

reservations because many advance reservations may be rejected even though the resources

will not be in use during the time requested for the advance reservations. For example,

assume that a network can provide 10 Mb/s of reserved bandwidth at any given instant.

If there are currently five 2 Mb/s indefinite reservations made for video conferences, we

cannot make any advance reservations, even though the current video conferences are not

likely to last until the end of time. While there are ways to combine advance and indefinite

reservations [16], this remains a problem, although not necessarily a technical problem.

For example, some implementations could allow a system administrator to make a policy

decision that indefinite actually means “twelve hours or less”, or that indefinite reservations

can be preempted by definite reservations.

Note that our GARA architecture, described in Chapters 4 and 5, uses only definite

reservations, but allows either immediate or advance reservations.

2.3 Quality of service

Now that we have defined reservations and resources, we can discuss the different types of

quality of service that we can provide.

If any of the resources we defined in Section 2.1 are shared between different appli-

cations, it is possible to give some applications guaranteed portions of the capacity of the

resources. This is what we mean by quality of service. Some specific examples follow.

2.3.1 Network quality of service

Network QoS usually specifies up to four characteristics of data transmission: bandwidth,

loss rate, delay, and jitter.Bandwidthis the total amount of data sent on the network

per time unit (usually, but not necessarily, seconds). Note that bandwidth usually refers

to network bandwidth, not the throughput observed by the application. The maximum

application throughput is lower than the network bandwidth due to network and protocol

6

overheads, such as packet headers.Loss rateis the maximum number of packets that can

be lost per time unit.Delay is the maximum amount of time that a packet will take to

travel from the sender to the receiver.Jitter is the maximum variance in delay between

successive packets. Limiting the jitter is useful for real-time multimedia applications that

wish to present a user with a steady frame rate.

Some people have envisioned other types of network QoS such as security, which may

allow flows with different levels of encryption or resistance to tampering, but this is not

usually considered, and we will not consider it here.

Note that most network QoS architectures provide half-duplex reservations. That is, if

an application requires bi-directional reservations for QoS, two reservations must be made,

one for each direction.

2.3.2 CPU quality of service

CPU QoS can be divided into two different categories: shared and exclusive. On a computer

where a CPU is shared with different user-level applications, a user might specify a QoS

reservation as a percentage of the CPU time over a time interval. On a larger multiprocessor

machine there may be only one user-level application per CPU, so a QoS specification may

request exclusive access to one or more of the CPUs on a computer.

2.3.3 Storage quality of service

There are two common types of QoS for storage devices: bandwidth and space.Bandwidth

is the total rate of data sent between the storage device and the application, whilespaceis

the total amount of data the application can store for any files that it uses.

2.4 High-end applications

It is easiest to understand what we consider to be a high-end application by providing

examples. Below we describe three representative examples of the high-end network ap-

plications that are encountered, for example, in advanced scientific and engineering com-

puting [21].

7

2.4.1 Distance visualization of large data sets

Scientific instruments and supercomputer simulations generate large amounts of data: tens

of terabytes today, petabytes within a few years. Remote interactive exploration of such

data sets requires that the conventional visualization pipeline be decomposed across multi-

ple resources. A realistic configuration might involve moving data at hundreds or thousands

of Mb/s to a data analysis and rendering engine which then generates and streams real-time

MPEG-2 (or perhaps HDTV, in the future) video to one or more remote client, with control

information flowing in the other direction. QoS parameters of particular interest for this

class of application include bandwidth, latency and jitter; resources involved in delivering

this QoS include storage, network, CPU, and visualization engines.

2.4.2 Large data transfers

In other settings, large data sets are not visualized remotely but instead are transferred in

part or in whole to remote sites for storage and/or analysis. The need to coordinate the

use of other resources with the completion of these multi-gigabyte or terabyte transfers

leads to a need for QoS guarantees of the form “data delivered by deadline” rather than

instantaneous bandwidth. Notice that achieving this goal requires the scheduling of storage

systems and CPUs as well as networks so as to achieve often extremely high transfer rates.

2.4.3 High-end collaborative environments

High-end collaborative work environments involve immersive virtual reality systems, high-

resolution displays, connections among many sites, and multiple interaction modalities in-

cluding audio, video, floor control, tracking, and data exchange. For example, the NCSA

Alliance “Access Grid” currently connects tens of sites via multiple audio, video, and con-

trol streams, with the audio streams especially vulnerable to loss. Such applications require

QoS mechanisms that allow the distinct characteristics of these different flows to be repre-

sented and managed [12].

8

2.5 Providing QoS to high-end applications

High-end applications such as the ones just described have various QoS requirements,

which we now examine.

2.5.1 Heterogeneous network flows

The applications of interest frequently incorporate multiple network flows with widely

varying characteristics, in terms of bandwidth, latency, jitter, reliability, and other require-

ments. For example, a collaborative environment might have low bandwidth control flows

but require them to be very low delay, while simultaneously having a high bandwidth video

stream that can tolerate high delay.

2.5.2 High bandwidth flows

Some applications involve high bandwidth flows that may require a large percentage of the

available bandwidth on a high-speed link. For example, in recent work, Rebecca Nitzan

and Brian Tierney of Lawrence Berkeley National Laboratory (LBNL) demonstrated trans-

fer rates of up to 450 Mb/s over a wide area OC12 network [45], and the Globus Project

has demonstrated an average wide-area transfer rate of 512 Mb/s with peaks of up to

1.55 Gb/s [1]. The need for high bandwidth has significant implications for both mecha-

nisms and policy. QoS mechanisms are required that can support such flows while allowing

coexistence with other flows having different characteristics. At the policy level, we be-

lieve that approaches are required that allow for the coordinated management of resources

in multiple domains, so that virtual organizations (e.g., a scientific collaboration) can ex-

press policies that coordinate the allocation of the resources available to them in different

domains.

2.5.3 Need for end-to-end QoS

Satisfying application-level QoS requirements often requires the coordinated management

of resources other than networks: for example, a high-speed data transfer can require the

scheduling of storage system, network, and CPU resources.

9

2.5.4 Need for application-level control

Good end-to-end performance requires applications to discover resource availability, to

monitor achieved service, and to modify QoS requests and application behavior dynami-

cally.

2.5.5 Need for advance reservation

Specialized resources required by high-end applications such as high-bandwidth virtual

channels, scientific instruments and supercomputers are scarce and in high demand; in

the absence of advance reservation mechanisms, coordination of the necessary resources is

difficult. Advance reservation mechanisms are needed to ensure that resources and services

may be properly scheduled.

2.6 The solution

Earlier we stated that our goal is to provide useful, convenient quality of service (QoS) to

high-end applications. We can now restate this goal as:

It is our goal to provide high-end applications with the ability to make and control

multiple coordinated advance reservations for end-to-end QoS on heterogeneous resources

including networks, CPUs, and storage devices.

Broadly speaking, this goal requires that we solve three different and equally important

subproblems: the development of low-level QoS mechanisms, the design of a QoS system

architecture to conveniently manage these QoS mechanisms, and methods of simplifying

access to QoS within high-end applications. This dissertation describes our contributions

to all three of these aspects, but the emphasis is on the design and implementation of our

QoS architecture, GARA.

• QoS ArchitectureWe developed an extensible, modular and novel architecture

(GARA) to enable advanced usage of different QoS mechanisms. GARA, described

in Chapters 4 and 5, provides advance and immediate reservations of definite dura-

tion, feedback to applications, and uniform access to different types of QoS mecha-

nisms.

10

• QoS MechanismsIn Chapters 6 and 7, we describe our implementation of mech-

anisms to provide network QoS as well as our integration with QoS mechanisms

developed by other researchers.

• High-Level UsesAn important aspect of a supposedly general-purpose architecture

is the ease with which it can be integrated naturally into a variety of higher level pro-

gramming abstractions. We developed such an integration, described in Chapter 7,

to assist scientific programmers using the Message Passing Interface (MPI) library

to make it easy to make and use network reservations. This work shows that QoS

can be integrated into the MPI model with minimal changes to MPI, while still pro-

viding convenient access to programmers. Moreover, it shows that our architecture

can easily be used to support high-level programming abstractions. In Chapter 7 we

also describe other high-level uses of GARA, particularly mechanisms for making

multiple reservations, an essential feature for high-end applications.

The rest of this dissertation describes these contributions in more detail.

CHAPTER 3

RELATED WORK

In this chapter, we discuss various QoS system architectures which are comparable to our

system GARA (described in Chapters 4 and 5). In addition to complete system architec-

tures, we could discuss the wide variety of research on various QoS mechanisms. However,

because the main contribution of this dissertation is the unifying architecture, we have cho-

sen to focus our discussion of related work on complete QoS architectures.

3.1 OMEGA

OMEGA, [41, 40] is a QoS architecture that aims to provide end-to-end QoS guarantees

in networked multimedia systems. The creators of OMEGA realized that end-to-end QoS

requires not just network QoS, but also CPU and memory QoS, to ensure that the network

QoS is effective.

To simplify QoS requests, users do not interact with the underlying reservation systems,

but instead interact with the QoS broker, shown in Figure 3.1. The QoS broker serves two

important functions:

• The QoS broker translates high-level QoS requests such as “I want to send video that

is 120x60 at 20 frames per second” into the appropriate underlying QoS needs, such

as bandwidth and loss rates.

• The QoS broker communicates with the various underlying reservation systems on

behalf of the user, sparing the user the complexities of interacting with the various

reservation systems.

There are a few of important differences between the OMEGA system and our QoS

framework, GARA.

11

12

System

�

QoS Broker

�

User

�

Application

�

Network

CPU/OS

�

QoS/Y/N

QoS/Y/N

QoS/Y/N

Y/N

�QoS

Figure 3.1: The OMEGA QoS Broker. This figure is copied from [41].

• The OMEGA system integrates different types of QoS only in support of network

QoS. GARA is more flexible, helping applications to use whatever type of QoS they

desire, independently or in combination with other types of QoS. To do this, GARA

supports an expandable architecture that adapts easily to different underlying QoS

systems.

• OMEGA is focused on supporting multimedia applications, and therefore can incor-

porate a QoS broker that translates application QoS needs to lower-level QoS needs.

Although it is clear how to make this translation for many multimedia systems, as the

QoS broker does, it is not clear how to do this in general for high-end scientific ap-

plications, so GARA does not provide this sort of translation service. Note, however,

that GARA’s modular architecture can easily support any translation service that is

developed.

• OMEGA, unlike GARA, requires users to use a special library for network commu-

nication instead of standard interfaces. This is beneficial because OMEGA can then

ensure that the communication processing uses the CPU reservation. However, it

places an extra burden on programmers who wish to modify their programs as lit-

tle as possible in order to receive QoS, and who want their programs to run without

modification when QoS mechanisms are not available.

13

3.2 QoS-A

The QoS Architecture (QoS-A) [6] is an architecture developed by Andrew Campbell to

provide end-to-end QoS. Because network guarantees alone are often insufficient, QoS-A

is a complete architecture (although only partially implemented) that demonstrates how to

realize end-to-end QoS guarantees using a combination of different types of QoS. QoS-A

is shown in Figure 3.2. Note that the distributed systems platform and orchestration layers

were not implemented, but the lower layers were.

Distributed Systems Platform

Orchestration Layer

�

Transport Layer

�

Network Layer

�

Data Link Layer

Physical Layer

QoS Maintenance Plane

�

Flow Management Plane

Control Plane
 User Plane

Protocol Plane

�

Figure 3.2: QoS-A. This figure is copied from [6].

QoS-A provides both hard (tightly bounded) and soft (more variable) end-to-end guar-

antees, in addition to best-effort delivery. Hard guarantees are for applications that are not

capable of adaptation and have strict performance needs, while soft guarantees are usable

by applications that adapt to small variations in service.

Applications that want to have guarantees are required to use a specialized communica-

tion protocol called METS to transmit data and a signaling protocol called METSig to make

reservations. The guarantees are implemented using ATM, but QoS-A also provides thread

scheduling, flow shaping on the end systems, buffer management, and jitter correction to

help ensure that the guarantees are met.

QoS-A is a detailed architecture, although only parts of it were fully implemented. Like

OMEGA, it requires programmers to use special interfaces for network communication,

14

and is able to provide good guarantees. QoS-A is also similar to OMEGA in that it focuses

on networked multimedia applications. Although it can be applied to non-multimedia pro-

grams, it is not particularly appropriate for programs that do not require network QoS but

do wish for other types of QoS, such as CPU and disk QoS.

3.3 2K and2KQ

2KQ [42] is a part of the 2K system. It is a unified QoS framework, implemented as a

CORBA service. It provides ways to translate end-user QoS parameters, select resources,

and make reservations for end-to-end QoS.2KQ accepts as input a functional graph of the

application, rules to translate QoS specifications such as “High Quality” (as provided by

an unknowledgeable program user) to specific parameters such as “30 frames per second”,

and descriptions of the resources that can be used.2KQ then compiles these three user

inputs into specific QoS parameters for specific resources. With such a system, one can

presumably translate QoS needs for any particular application.

2KQ provides a good mechanism for co-reservation (see Chapter 7), which the devel-

opers call multi-resource reservation [58]. Users provide graphs describing the connections

between components of their programs.2KQ uses an algorithm to select resources that will

fulfill the users request while having the least impact on the system, therefore allowing the

maximum number of requests to be fulfilled. It does this by avoiding resources that cause

the greatest bottlenecks. This requires, of course, that there are multiple resources available

to fulfill users’ requests.

3.4 QuO

QuO (Quality of Service for CORBA Objects) [59] takes a different approach to QoS than

the previously described systems. The developers of QuO came from a background of

building distributed object-oriented applications. They found that applications developed

for use on local systems and local area networks (LANs) did not work well in wide area

networks (WANs). It was not merely that the applications needed QoS guarantees, but that

they could not easily adapt to changing conditions in a WAN because there was a single

15

implementation for an object. If there were multiple implementations, an appropriate one

could be chosen for the current conditions.

QuO is a CORBA-based QoS system that provides three important features:

• QuO providesconnectionsbetween clients and the objects that they use. Objects can

specifyregionsof quality and provide different implementations when the quality is

different. For example, a method might use a different algorithm in a high bandwidth

environment than a low bandwidth environment. This allows applications to easily

adapt to various conditions at runtime, because they can switch from region to region.

• QuO makes the design decisions of an object explicit so that good adaptation can

occur. For example, the structure description language describes the resources that

an object requires.

• Users specify QoS needs at a high-level. For example, instead of requesting 5 Mb/s,

a programmer will request 1000 remote object invocations per second. Applications

do not need to worry about the low-level QoS implementations QuO uses, such as

RSVP or differentiated services for network QoS.

QuO is an excellent example of providing useful QoS to high-level programmers that

need QoS but do not wish to be burdened with all of the low-level details, and desire to

develop programs that can run flexibly in different environments. However, QuO does

require that applications use object-oriented programming and CORBA.

CHAPTER 4

GARA, A FRAMEWORK FOR USING QUALITY OF SERVICE

The major contribution of the work presented in this dissertation is the design of the

General-purpose Architecture for Reservation and Allocation (GARA) system. GARA

provides programmers and users with convenient access to end-to-end quality of service

(QoS) for computer applications. It provides uniform mechanisms for making QoS reser-

vations for different types of resources, including computers, networks, and disks. (See

Chapter 2 for more information on QoS and reservations.) These uniform mechanisms are

integrated into a modular structure that permits the development of a range of high-level

services.

4.1 High-level overview

GARA is a straightforward system, as illustrated in Figure 4.1. A GARA-enabled program

makes a request for a QoS reservation to the GARAArbitrator. This request is specified in

a uniform way: requests are not substantially different for different types of resources and it

is easy to make many such requests. The GARA Arbitrator communicates with aresource

manager. Resource managers may be part of the GARA system, or may be provided by

other systems: the GARA Arbitrator ensures seamless communication in either case. The

resource manager decides if a QoS reservation can be granted or not. Assuming it can be

granted, the GARA Arbitrator returns an opaque string, called a reservation handle, to the

requesting application. This reservation handle can be used to manipulate the reservation

by modifying, canceling, or querying it.

Note that reservations do not have to be made by the program that will use the reserva-

tions. This is important since reservations can be made well in advance of the time that they

will be used. However, it is also convenient to be able to make reservations for programs

for which you cannot change the source code.

16

17

In addition to this basic interaction, GARA provides asynchronous feedback to pro-

grams. That is, when there are changes to a reservation, programs can be immediately

informed of the change. Feedback ranges from notification that a reservation has begun or

ended to notification that a reservation is apparently too small for the application’s needs.

Client

GARA

Arbitrator

�

Resource

Manager

�

QoS Request

Reservation

Handle

Figure 4.1: A program makes requests to the GARA Arbitrator which mediates access
to the resource manager. If a reservation can be made, the GARA arbitrator returns a
reservation handledescribing the reservation.

4.2 Main features of GARA

There are four important features to the GARA architecture:

First, GARA provides a single, unified interface to advance and immediate definite

reservations for a diverse set of underlying resources. The GARA interface is the same

whether the programmer is working with network reservations, CPU reservations, or an-

other other type of reservation. This is true even though the resource managers that im-

plement these reservations work differently and have different interfaces and requirements.

We have verified GARA’s generality by integrating it with a wide range of resource man-

ager created by ourselves and others. Because of its uniform interface, GARA simplifies

the task of working with diverse sets of resource reservations. Note that other comparable

systems either do not provide advance reservations, or do not provide a unified interface,

or both.

Second, because GARA provides a unified interface to diverse types of QoS,it is easy

to build higher-level services on top of GARA. An example of such a higher-level service

in Section 7.3, where we describe a service that provides convenient mechanisms for creat-

ing and manipulating multiple reservations. Another example is in Section 7.4, where we

18

describe how we provide QoS to scientific applications that use the MPI communication

library.

Third, the layered GARA architecture allows for easy extensions as new resource types

become available.For example, a graphic application that makes CPU and network reser-

vations can easily add reservations for graphic pipelines if that ability is added to the lower

layers of GARA. It is easy to add to the lower layers, and it does not require deep un-

derstanding of the higher layers. (In fact, a collaborator has added the ability to make

reservations for graphic pipelines on SGI computers [13].)

Fourth, GARA uses a security infrastructure so thatall reservation requests are securely

authenticated and authorized. Security is an important aspect for a system that allows

reservations, yet many QoS systems do not provide security.

4.3 GARA architecture

A view of the abstract GARA architecture can be seen in Figure 4.2.

As shown in the figure, GARA consists of three layers:

• High-level services layer

• Arbitration layer

• Resource management layer

We will describe each of these layers in turn.

4.3.1 High-level services layer

The high-level services layer encompasses a wide variety of services. Because there is a

standard interface to the arbitration layer (described in Section 4.3.2), it is easy to build

various services that use GARA. This is because the high-level services do not need to

concern themselves with the details of the various underlying reservation mechanisms, but

can instead concentrate on the strategies that they can provide to users.

19

User-Program

�

High-Level Library

� Co-Reservation

Service

Arbitration Layer

�

Security

Service

Syntax/

Semantic

Check

Selection
 Translation

Resource Manager
 Resource Manager
 Resource Manager

Publication Service

�

Fe
ed

ba
ck

High-Level Services Layer

Resource Management Layer

�

Figure 4.2: An abstract picture of the GARA system architecture. Note that all resource
managers can provide feedback and communicate with the publication service, but to keep
the diagram simple, not all arrows were drawn.

A variety of high-level services are possible. For example, in Section 7.3 we describe

co-reservation services that make a combination of reservations on behalf of users, while

the normal GARA interaction via the arbitration layer only allows a user to make a single

reservation at a time. Although working with a small number of reservations is a reason-

able task for a user, when the number of reservations grows large they become difficult to

manage. This is particularly true if resources are scarce and it takes a significant amount

time to find appropriate resources that can grant the reservations that the user requires. It is

therefore appropriate to create reusable co-reservation agents to encapsulate strategies for

20

discovering resources and making reservations for users.

Another example of a high-level service is integrating QoS into a high-level library. We

describe such a service in Section 7.4, which extends an implementation of the Message

Passing Interface (MPI), a communication library commonly used by scientific program-

mers, to allow programmers to easily access reservations for network quality of service.

The programmers do not need to understand the details of using GARA, but instead work

within the comfortable MPI model that they are used to.

4.3.2 Arbitration layer

In Section 4.1, we said that GARA provides a unified interface to a diverse set of underlying

resources. The Arbitrator, or arbitration layer, is the layer that provides this unified interface

and interacts with these diverse resources.

Clients communicate with the arbitration layer using the GARA Application Program-

mer’s Interface (API), which is described in detail in Appendix A, but below we provide

a brief description of how it works. When clients make requests, the arbitration layer acts

as an intermediary to the underlying resource managers (described in Section 4.3.3) that

track and manage reservations and resources. The arbitration layer ensures that the client’s

requests are correct and translates these requests so that they can be understood by the ap-

propriate resource manager. When errors occur they are communicated directly back to the

user.

Interacting with the arbitration layer begins when the client makes requests to the arbi-

tration layer. Therefore, we begin by describing the GARA API, which the client uses to

make these requests.

The GARA API

Clients use the GARA API to communicate with the arbitration layer. That is, all parame-

ters to make and modify reservations are provided to the arbitration layer through the API,

and all errors that may occur in the arbitration layer or the resource management layer

are communicated back the client through the API. In this section, we briefly describe the

GARA API at an abstract level. The details of the API can be found in Appendix A.

21

The GARA API has three significant features:

• Clients describe the reservations they wish to make using a list of attribute-value

pairs in a text format called the resource specification language, or RSL [11]. The

representation that is used is an extensible and easy-to-use format: it is easy to add

new attributes, and is easy for the arbitration layer to parse and translate the attributes

into appropriate data structures for the underlying resource managers. Moreover,

many attributes, such as the time the reservation starts, are applicable to all types of

reservations, simplifying the task of a programmer that needs to deal with multiple

types of reservations. An example reservation description for a network reservation

might look like this:

&(reservation-type=network)

(start-time=953158862)

(duration=3600)

(endpoint-a=140.221.48.146)

(endpoint-b=140.221.48.106)

(bandwidth=150)

Note that clients always specify both a start time and a duration for their reservations.

The start-time can benowfor an immediate reservation, or can be a time in the future,

specified as seconds since January 1, 1970. The duration, also specified in seconds,

is always required. That is, GARA only uses definite reservations. The endpoints are

the computers that will be using the reservation, and the bandwidth is in kilobits per

second.

Also note that the GARA API only allows a single reservation for a single resource

to be specified per RSL description. For example, a client can make a reservation

for CPU time or a reservation for network bandwidth, but if both are needed the

client needs to make two separate requests with two separate RSL descriptions. Of

course, it is desirable to combine requests, and that is one possible service that can be

built into the high-level services layer. For two examples of services that can handle

combined requests, orco-reservations, see Section 7.3.

22

• There are not distinct functions for distinct types of reservations, but instead there is a

single function for each operation, such as cancel, for all types of reservations. These

functions represent reservations withreservation handles. This reservation handle is

an opaque string; that is, applications should not try to interpret the contents of the

handle. Because it is a string, it can be easily saved to disk or passed to another

program. Because all types of reservations use the same type of reservation handles,

applications can build reservation strategies and code that are often independent of

the type of reservation.

After an application makes a reservation, it is provided with the reservation handle

if the request succeeds, or an error if it does not succeed. In C-style code, this looks

like:

error = make_reservation(description, &handle);

A reservation can be modified similarly:

error = modify_reservation(handle, new-description);

and cancelled similarly:

error = cancel_reservation(handle);

Notice that errors are reported directly to users when the function has executed.

Similarly, a query can be made to discover the status of a reservation. Another impor-

tant operation is thebind operation. This provides information about the reservation

that is required to make it work, but the information is often not be known at the

time a reservation is made. For example, a network reservation may be made long

before the network connection is made, but GARA needs to know the TCP or UDP

port numbers being used for the network connection in order to recognize packets

that belong to the reservation. This information is provided with the bind operation.

23

• Resource managers can provide feedback to applications directly by calling a func-

tion (called acallback) in the application. Applications must request this directly,

and they provide an appropriate function to be called by GARA. The arbitration

layer is in charge of setting up the communication channel for the resource manager

to communicate with the application.

This callback can be used to provide simple feedback to the application, such as

“the time for your reservation has just expired,” as well as much more interesting

feedback, such as “you are sending data at a faster rate than the reservation you made

allows.” Examples of interesting uses of the feedback provided through the callback

are found in Section 7.2.

Security service

When a user begins communication with the arbitration layer, the first thing the arbitration

layer does is to authenticate and authorize that the user is allowed to communicate with

GARA.

This is an important aspect of GARA because not everyone is allowed to make a reser-

vation for a resource. Administrators wish to control who has access to resources and such

control requires authentication to ensure that the system knows who a user is and autho-

rization to ensure that a user is allowed to make the reservation.

The authorization in GARA can range from simple authorization by consulting a list of

authorized users, to advanced policies that restrict what time periods that a user is allowed

to have a reservation for. Note that advanced policies may require knowing, for example,

the start time of a reservation, but this cannot happen before the syntax/semantic check that

happens below. Therefore, there may be some intermingling of the security service with

the syntax and semantic checks.

Details of the actual mechanisms used for authentication and authorization used in

GARA are found in Chapter 6.

24

Syntax and semantic checks

After the client has been authenticated and authorized, the arbitration layer will check that

the syntax and semantics of the reservation request are valid. This step is the most important

when a client is making or modifying a reservation, because this operation requires the most

details from the client.

The syntax check is a straightforward check that the attribute-value pairs have valid

attribute names and the values are specified correctly. For example, “lots” is not an accept-

able value for the bandwidth, which requires a number.

The semantic check is also straightforward, in part because the arbitration layer can not

fully check the semantics but must leave some of that to the resource manager. However,

the semantic check can ensure that users do not specify reservations occurring entirely in

the past, reservations that have negative durations or negative bandwidth, and other such

anomalies. Additionally it can check that all of the required attributes are specified. For

example, both start-time and duration must be specified when making a reservation.

The semantic check must also make sure that if a reservation handle is specified that it

is actually a reservation handle. All client interactions except for the initial creation of a

reservation specify a reservation handle.

Selection of resource manager

After the syntax and semantic checks, the arbitration layer selects the resource manager

that will be handling the client’s request. Because each reservation is made separately, only

one resource manager is needed. This procedure has two common cases:

• When a reservation is created, the client specifies what type of reservation is needed,

such as a network bandwidth or disk space reservation. Because GARA only sup-

ports one underlying resource manager for a given type of reservation, the selection

is a straightforward mapping. More complicated mappings are interesting to contem-

plate, but we do not envision that such mappings are likely to be needed.

• When a reservation is manipulated after it has been created, the same resource man-

ager that was used to create the reservation must be used to manipulate it. Therefore

25

the reservation handle encodes which resource manager created the reservation and

the arbitration layer can conveniently select the same resource manager for future

operations on the reservation.

Translation

Once the arbitration layer has selected the resource manager and parsed the description

of the parameters, the parameters can be translated for the underlying resource manager.

There are two types of translation that need to be performed:

• The reservation handle must be decomposed into a form that is recognizable by the

resource manager. Different resource managers have different methods for referring

to reservations. Whatever the resource manager expects is encoded in the reservation

handle so that the arbitration layer can easily extract the necessary information.

• Functions such as creating and modifying a reservation may require specific at-

tributes to be translated. For example, a user may request time on a CPU by spec-

ifying the percent of the CPU time they wish to use, but the underlying resource

manager may expect a time duration within a time interval (such as 90ms out of ev-

ery 100ms). Some translations of this sort are be easy to make, others are not so

simple.

Communication with resource managers

Finally, the arbitration layer communicates with the resource manager and provides it with

all of the parameters that have been checked and translated. The arbitration layer waits

for a response, then translates that response into a standard GARA response. Different re-

source managers use different methods for reporting and labeling errors and for describing

reservations. When a resource manager reports an error, the arbitration layer translates it

into a GARA error and reports it directly back to the user through the GARA API. If a

reservation was successfully made, the reservation description is translated into a GARA

reservation handle that can be manipulated by the client.

26

Note that this communication with resource managers, while not conceptually compli-

cated, is a core feature of GARA. There are a wide variety of resource managers: some

were developed as part of the GARA implementation effort, and some were developed by

other research groups. Because of this wide variety in resource managers, there are a wide

variety of methods of communicating with these managers. This portion of the arbitra-

tion layer encapsulates all of these different communication methods, insulating the clients

from the complication of the variety of communication.

4.3.3 Resource management layer

Beneath the arbitration layer is the resource management layer. For each resource for

which we can make a reservation, there is a corresponding resource manager. This resource

manager is responsible for several tasks:

• Accepting requests for reservations and performing admission control to decide if

those requests can be accepted.

• Interacting with the underlying resource (such as the network or computer) in order

to ensure that the reservations are guaranteed during the time interval over which

they are valid.

• Publicizing information about the unused reservation capability so that clients can

make decisions about what reservations are reasonable to request.

• Providing feedback to applications to inform them when their reservations begin and

end, as well as notice that a reservation is too small. For example, a resource manager

may inform an application that it is sending data faster than the reservation allows,

and therefore the application may not see the performance it expects.

Several resource managers have been created as part of the GARA project. Because

we wrote them, the task of the arbitration layer is simplified because the translation of user

parameters is simple, and the method of communication with resource managers is similar

between all GARA resource managers. On the other hand, several resource managers

have been developed and integrated into GARA by other research groups, as described in

27

Section 7.1. These resource managers may require different types of interaction than the

resource managers we develop, but the arbitration layer provides a uniform interface to all

of the resource managers.

Resource managers are described in more detail in the next chapter.

4.4 Summary

The three-layer GARA architecture we have described here is a powerful architecture. The

arbitration layer provides uniform access to a wide variety of underlying reservation mech-

anisms, and the high-level services layer builds additional useful services on top of the

arbitration layer. Users can choose to interact with the high-level services layer for sim-

plicity, or directly with the arbitration layer for have maximum flexibility.

4.5 Historical development of GARA and design decisions

It is often the case that the developers of a system such as GARA learn many things during

the development process. Unfortunately, the lessons learned from the twists and turns of

the development process are not always published.

When GARA was first developed [22], it attempted to provide more functionality than

the current version of GARA. The original version aimed to provide a uniform interface not

only to reservations, but also to manipulating the objects for which the reservations were

made. For example, the object for a compute reservation is the process or set of processes

that are running during the time of the reservation. The object for a network reservation is

the network flow. GARA then provided parallel function calls for reservations and objects:

Reservations Objects

createreservation(description) createobject(description, reservation)

modify reservation(reservation) modify object(object, reservation)

cancelreservation(reservation) cancelobject(object, reservation, description)

.

28

The createobject function instantiated the processes or network flow. The can-

cel object would kill the processes or close the network flow.

Our original feeling was that this was an elegant framework. But experience showed

that it was too general for two reasons. First, it was hard to define the semantics of cre-

ateobject for all types of reservations we could imagine. For example, what does it mean

to create an object for a disk reservation? Creating a file is inappropriate: a program may

simply want to write into a filesystem, or want to access pre-existing files with a guaranteed

bandwidth. Similarly, what does it mean to create an object for a graphics pipeline reserva-

tion? (Reservations for graphics pipelines have been added to GARA by another research

group, see Section 7.1.) We found that it was too difficult to shoehorn all the different

functionality into a single createobject function.

Second, using createobject requires users to use a new interface to functionality they

already have with other interfaces. For example, many programmers already have fully de-

veloped programs and libraries that use other mechanisms for submitting jobs to computers

or for creating network flows and they wish to add QoS with as little effort as possible. It

is easy for them to add support for making a network reservation, but difficult to retool

their applications to use alternate methods for creating the network flows. Additionally, it

is hard to provide the full range of functionality that programmers expect: when they create

a network object, can they specify TCP buffer sizes and the entire range of socket options

they expect on Unix? Do they have to use alternate access functions to send and receive

data?

Because of these difficulties, we simplified GARA to provide just reservations and not

objects. This change did not make GARA less general, but made it more useful. For

example, as we describe in Section 7.4, it was easy to add network QoS capabilities to a

high-level scientific communication library (MPI). Had we required MPI to create network

flows with our own mechanisms, it would have caused a significant amount of additional

effort, perhaps enough that it would not have been attempted.

CHAPTER 5

RESOURCE MANAGERS

5.1 Purpose of a resource manager

As we saw in Chapter 4, resource managers are the heart of GARA. They are responsible for

handling all aspects of reservations including admission control, bookkeeping, monitoring,

and interacting with the resource for which the reservations were made. For example, a

resource manager may configure routers or CPU schedulers to enforce network or CPU

QoS reservations respectively.

Figure 5.1 gives an abstract view of the functionality that a resource manager must

provide. We will now look at each of these pieces of functionality. Realize that these are

conceptual pieces, and in a particular resource manager these may be combined into single

modules, or separated into more modules.

Kernel

(Communication/

flow control)

Admission Control

(Policies)

Advance Reservations

�

Bookkeeping

(Publication)

Resource Control

Resource

�

Figure 5.1: An abstract picture of GARA’s resource managers

29

30

5.1.1 Kernel

Each resource manager has a kernel which is responsible for accepting external communi-

cation, interpreting it, and deciding how to react. When the arbitration layer (described in

Chapter 4) communicates with a resource manager, it is communicating with the kernel.

The kernel is responsible for providing feedback to applications via the arbitration layer.

At a minimum, this feedback includes notification when a reservation begins or ends. Re-

source managers often provide additional feedback, such as notification that an application

is oversubscribing its reservation. For example, an application may be sending data faster

than its reservation allows, and it would be to the advantage of the application to either

make a larger reservation or to slow down its rate of sending. To provide this feedback, the

kernel interacts with the other subsystems within the resource manager. Examples of using

feedback in interesting ways can be found in Section 7.2.

5.1.2 Admission control

When a request to make a reservation arrives, it is processed by admission control. Admis-

sion control is divided into two steps: first the resource manager decides if the reservation

is reasonable and allowable. This is a policy decision. Second, it decides if there is capacity

for the reservation.

The first step overlaps with the arbitration layer’s security service, which implements

some policy procedures to decide if a user is allowed to make a reservation. This is a

necessary overlap for two reasons. First, the security service necessarily makes a decision

without full knowledge of the internals of the underlying resource manager. For example,

a resource manager may have a policy to only accept reservations from graduate students

when more than fifty percent of the capacity of the resource is available. Such knowledge

is not available to the arbitration layer, so it cannot support such policies. Second, some

resource managers were written by other research groups, and they provide their own policy

management independent of the policy management already in the arbitration layer.

31

5.1.3 Advance reservations

In order to support admission control, the resource manager must provide a subsystem that

keeps track of advance definite reservations. This subsystem implements mechanisms for

keeping track of all the reservations that have been made, and a decision procedure for

deciding if a new reservation can fit with the existing reservations.

5.1.4 Bookkeeping and publication

In addition to the basic tracking of reservations, the resource manager must provide other

bookkeeping. This includes:

• Permanent storage for advance reservations on disk, in order to recover from short-

term failures such as a crashed computer or resource manager.

• Storage of extra information for each reservation. For example, while all reservations

include the time that it begins and ends, network reservations also have information

about the two computers involved in the reservation.

• Information about reservations that have already been made. This information is

made available through a publication service and includes basic information about

reservations so that entities wishing to make new reservations can make educated

decisions about what times may be available for reservations. This information can

be published in a number of ways, usually through an LDAP ([56]) directory. Other

publication methods are described in Chapter 6.

5.1.5 Resource Control

Resource managers are responsible for controlling the resource for which reservations have

been made. We must assume that resource managers have exclusive access to the resource,

even though some resources may not be well controlled. Without this assumption of exclu-

sivity, resource managers cannot actually guarantee any reservation, since another entity

can configure resources in a way that interferes with the reservations made through the

resource manager.

32

5.2 Implementation of resource managers

One reason to conceptually organize the design of resource managers as shown in Fig-

ure 5.1 is because each element is a candidate for code sharing. Most resource managers

will need to implement their own kernels and resource control subsystems, but the other

subsystems can often be implemented once as libraries and shared among resource man-

agers. As described in Chapter 6, this is how several resource managers were implemented

in GARA.

Such code sharing is not generally available when using resource managers developed

by different authors. In fact, there is a wide range of resource manager functionality among

different resource managers, and not all of them may implement the functionality required

by GARA. Externally written resource managers can be integrated into GARA in two dif-

ferent ways:

• Some resource managers happen to implement the full functionality needed, and the

arbitration layer handles interaction with such resource managers just like any other.

• Some resource managers implement a subset of the functionality of GARA. Most

commonly, resource managers implement immediate reservations but not advance

reservations. In this case, awrapperresource manager can be created. This resource

manager provides the additional functionality that is necessary and communicates

with the underlying resource manager. While this is a workable technique (indeed,

we will see an example of such a wrapper resource manager in Chapter 6), the wrap-

per resource manager needs to assume that it has exclusive access to the underlying

resource manager, just as resource managers assume exclusive access to the resource.

Essentially, the underlying resource manager becomes a resource for the wrapper re-

source manager.

5.3 Design of a resource manager

Section 5.1 described resource managers in terms of the functional blocks they must im-

plement. However, the functional blocks were fairly abstract, and not much detail was

33

provided. This was appropriate because of the wide variety of resource managers that can

be implemented in widely varying manners.

In this section, we look at an alternative way of describing the behavior of resource man-

agers in terms of sensors, actuators, and decision procedures (from the language of [46]).

This description will become particularly relevant in Section 7.2 when we describe how

these three mechanisms can interact to provide adaptation. For now, we limit ourselves to

describing what these mechanisms are.

Because sensors, actuators, and decision procedures describe resource managers at a

finer level of detail than the functional blocks we used earlier, there is a greater variety

from resource manager to resource manager. One example of how these mechanisms may

combine can be seen in Figure 5.2.

The three mechanisms are:

• actuatorsthat permit online control of resource allocations or application behavior;

• sensorsthat permit monitoring of resource allocations or application behavior; and

• decision proceduresthat allow entities to respond to sensor information by invoking

actuators.

As illustrated in Figure 5.2, these three elements act in concert to achieve adaptive

control. For example, in a network resource manager a sensor might signal a nonzero

loss rate associated with a flow at a router, which indicates that an application is sending

data too quickly. (As described in Section 6.5.1, when a user sends data too quickly, it is

dropped.) A decision procedure in the associated application can then execute to determine

whether to reduce the sending rate or alternatively, generate a request to a resource manager

to increase the reservation for that flow by invoking an actuator.

Although the discussion that follows emphasizes the importance of these three elements

for adaptive control, they are equally important for describing the behavior of resource

managers.

34

Network

�Application A

�

(Sender)

Network Resource Manager

�

QoS Enforcement

Loss Rate

Sensor

Reservation

Actuator

Admission

Decision

Procedure

�

Adaptation

�

Decision

�

Procedure

Application B

(Receiver)

Edge Router

�

Create

Reservation

�

Figure 5.2: An example of how actuators, sensors, and decision procedures may be com-
bined within a resource manager. This particular example shows a network resource man-
ager.

5.3.1 Actuators: online control

A first prerequisite for adaptation is support for online control of resource characteristics.

Resource managers fulfill this requirement directly via control functions that allow an ap-

plication to make and subsequently modify QoS reservations, as described in Chapter 4.

GARA examines and translates the application’s requests using the arbitration layer before

passing it to the resource manager’s reservation actuator. This reservation actuator uses an

admission control procedure to decide if the reservation can be accepted, and the actuator

communicates the answer back to the application via GARA.

35

5.3.2 Sensors

A second requirement for adaptive control is that we are able to determine the state of

system components and detect state changes. Resource managers contain the functional-

ity in sensors, and can provide the sensor’s input to the application through the callback

mechanism described in Chapter 4. We have implemented two such sensors in our GARA

prototype.

All resource managers implement a reservation change sensor. This sensor reports

when a reservation begins or ends. This sensor can be used in two ways. First, it is part of

the publication mechanism described above, to inform entities seeking information about

the state of reservations in the resource manager. Second, applications do not have to

closely monitor the time in order to know when a reservation begins or ends: they are

notified when it begins. This is particularly useful when the application cannot rely on

having its local clock precisely synchronized with that of the resource manager.

Some resource managers implement other sensors as well. For example, a network

resource manager may monitor how many packets that belong to a reservation are being

dropped because they are being sent over the reserved bandwidth. (See Chapter 6 for more

information about how our network resource manager works.) This sensor therefore detects

that an application has made an incorrect reservation that needs to be adjusted. An example

of this is described more fully in Section 7.2.

5.3.3 Decision procedures

The third component of an adaptive control architecture comprises the decision procedures

that invoke actuators in response to sensor data.

In our environment, such decision procedures can occur in multiple locations: not only

do they appear in resource managers, but also in applications. This enables interesting

adaptive behavior, because both the resource manager and the application are able to react

to changing conditions.

Decision procedures may be invoked within a resource manager at a number of points.

Following authentication, an incoming request is first authorized and then executed. Deci-

sion procedures may be invoked at both stages: for example, to determine whether a request

36

should be granted, in the first instance, and to reallocate resources in the second instance if

the newly authorized reservation oversubscribes available resources.

A particularly interesting decision procedure is our network resource manager’s bulk-

data transfer decision procedure, which is described in Section 7.2.

CHAPTER 6

IMPLEMENTATION

Chapters 4 and 5 described the GARA architecture. We now provide a detailed description

of the GARA implementation and motivations for the decisions made in the implementa-

tion.

6.1 Implementation overview

Figure 6.1 shows an overview of the GARA implementation. This should be compared

to Figure 4.2 on page 19, the overview of the GARA design. The arbitration layer in

Figure 4.2 is not contained in a single spot within our implementation, but is spread between

two processes: the gatekeeper and the GARA service, both described below. In turn, the

GARA service uses the Local Reservation and Allocation Manager (LRAM) API, which

contains the final pieces of the arbitration layer.

The reason for this division is partly practical and partly historical. GARA was devel-

oped within the context of the Globus project [20], and the gatekeeper is a standard Globus

component. Because we were able to leverage off of this existing infrastructure we not

only developed a prototype of GARA more quickly, but the infrastructure simplified distri-

bution of GARA to external developers. Although this was not of theoretical importance, it

was of great practical importance: system administrators that have already installed Globus

(which is widely used) trust the security mechanisms that GARA uses because they are the

same security mechanisms used by Globus.

GARA is implemented in C, and works on a variety of Unixes.

37

38

Final

Selection

Translation

�

User Program

�

Gatekeeper

Security

Service

Syntax/

Semantic

Check

Initial

�

Selection

LRAM

�

GARA Service

GARA API

Resource

Manager

�

Figure 6.1: An overview of how GARA was implemented. See text for details.

6.2 Client interaction with GARA

Clients communicate with the arbitration layer by using the GARA API. This API is con-

tained within a library that is linked into an application. The API is described briefly in

Chapter 4, and in detail in Appendix A.

The GARA API uses standard Unix socket functions for network communication to

the arbitration layer. For each function call that requires communication with a resource

manager, the API opens a new connection to the gatekeeper and provides the identity and

credentials of the user so that the gatekeeper can authenticate and authorize the user. The

identity and credentials are provided by Globus [23], which uses the Generic Security Ser-

vice API (GSSAPI) [36] to provide user credentials and authentication. While the GSSAPI

39

can theoretically provide a variety of security mechanisms to Globus, in practice Globus

normally uses either X509 certificates [7] and PKI authentication, or Kerberos [52].

The client communicates all parameters over the connection that is opened, and the

arbitration layer communicates reservation handles and any errors using the same connec-

tion.

A good candidate for future optimization would be to reuse connections to the gate-

keeper in order to avoid the overhead of the repeated authentication for a single reservation.

However, since we expect that most reservations exist for a long time and are infrequently

modified, this optimization was not a priority.

6.3 Gatekeeper

The gatekeeper authenticates a user, as described in Section 6.2, not only for GARA, but

for other services such as job creation. Because the gatekeeper normally runs as root on

Unix systems, system administrators prefer that the gatekeeper is as simple as possible.

Therefore the gatekeeper does not provide services such as QoS or job creation directly,

but after a user has been authenticated and authorized, the gatekeeper launches an external

program to handle the request. This external program is called a gatekeeper service or in

our case, the GARA service.

When a user connects to the gatekeeper, it must specify which service it wishes to use.

Once the user has been authenticated, the gatekeeper consults a lists of users that can be

authorized to use services on the machine. For each user that is listed, the services available

to that user are listed. This means that a user can be authorized to use GARA, but not an-

other service controlled by the gatekeeper. This is the extent of authorization performed by

the gatekeeper. More sophisticated policy-based authorization such as “graduate students

can only make reservations for times between 8:00pm and 5:00am” cannot be performed

by the gatekeeper but must be performed either by the GARA service (described next) or

within a resource manager. This is because the gatekeeper merely passes the user’s request

to the gatekeeper service and performs no interpretation of the request.

40

6.4 GARA service

As described in the previous section, the GARA service is a process created by the gate-

keeper after the user has been authenticated and authorized, and it implements the portions

of the arbitration layer other than the security service.

The GARA service uses the Local Reservation and Allocation Manager (LRAM) li-

brary and API to communicate with resource managers. Originally, it was thought that

applications wishing to make reservations locally could also use the LRAM API and avoid

the overhead of the remote connection and security. This has not turned out to be use-

ful. However, the LRAM API is useful for another reason: after the GARA service parses

the users request, it uses the LRAM API as a partially abstract interface to resource man-

agers. That is, the GARA service can parse and check users requests, but it does not need

to understand the details of communicating with the resource managers. This simplifies

construction of the GARA service, which usually does not need to be modified for new

resource managers, it just needs to be recompiled with a new LRAM library.

The LRAM API is not as abstract as the GARA API. Unlike the GARA API, which

only has a single function for making a reservation, the LRAM API has a set of functions

for making reservations, one for each type of underlying resource: network, CPU, etc.

The LRAM library is responsible for the translation of parameters from the parameters

provided by the user to the parameters used by the particular resource manager.

6.5 Resource managers

In Section 5.2, we described two different varieties of resource managers: those that im-

plement the full functionality needed by GARA, and those that need a wrapper resource

manager to provide additional functionality. In this section, we give examples of these types

of resource managers that were implemented in GARA. However, we will break down the

resource managers into three types:

1. Native resource managerswere developed entirely within the development of the

GARA development effort. Because of this, they integrate easily with the rest of

41

GARA. They also allow us to directly experiment with different types of QoS. An

example of a native resource manager is the network QoS manager that we built.

2. Full-functionality third-party resource managerswere developed entirely by other

groups and they provide all the functionality that GARA expects. For this type of

resource manager, we only had to modify the LRAM library to provide translation

and communication with the resource managers. An example is the Portable Batch

System (PBS) job scheduling resource manager which is interfaced to through the

LRAM library.

3. Wrapper resource managerswere developed within the context of the GARA devel-

opment in order to provide additional functionality to externally developed resource

managers that do not provide all of the functionality that is expected by GARA. An

example is our wrapper for the process QoS resource manager, which uses the Dy-

namic Soft Real Time scheduler (DSRT). DSRT provides immediate reservations, so

we built a wrapper resource manager that adds advance reservations and callbacks.

We will look at each of these resource managers in turn.

6.5.1 Network QoS resource manager

We built a resource manager from scratch to provide network QoS using differentiated

services. Before explaining the highlights of the resource manager, we will take a brief

look at differentiated services, also known asdiffserv. Further reading about diffserv is

also available in [44, 2, 33, 30, 43].

Differentiated services

Early work in network QoS, such as Tenet [15] and RSVP [4] with Integrated Services [3]

required that each router between the sender and receiver recognize and individually treat

packets belonging to each reservation separately. This is expensive since each router must

devote memory and processing power to recognize and treat each reservation.

42

In the late 1990’s, researchers became concerned with this heavyweight methodology.

While it can provide excellent QoS for a small number of data streams, it is not clear

whether it scales well to the entire Internet. If reservations become widely used across

the Internet, then core routers, those routers in the heavily used backbones of the Internet,

could conceivably have to recognize and process millions of simultaneous reservations.

This would require a considerable amount of memory and processing power, increasing the

expense and complexity of the core routers. Some researchers even questioned if routers

could be made that can support so many reservations at the high speeds that are necessary

in the Internet backbone.

Therefore, researchers began proposing an alternative method of providing network

QoS called differentiated services, or diffserv [44]. The basic idea of diffserv is that we

push the hard work of network QoS to the edges of the network and keep the work in the

interior of the network as simple as possible. To make the discussion that follows clear, we

will divide routers into two types: edge routers and core routers. A router is on the edge if

it has an interface through which a computer or non-routed network is directly connected.

A router is a core router if it has an interface that connects to another router. Note that, with

this definition, a router may be both an edge router and a core router.

In diffserv, computers or edge routers recognize packets entering the network that be-

long to reservations and mark those packets as belonging to a traffic aggregate. That is,

packets from different reservations are marked with the same marking, making them part

of the same traffic aggregate. Core routers do not recognize individual reservations, but do

recognize traffic aggregates based on the simple markings in the packets, and they treat dif-

ferent aggregates differently. For example, an edge router might recognize all traffic from

my computer and mark it as priority traffic, another edge router might recognize video traf-

fic and mark it as priority traffic, and the core routers might recognize priority traffic and

give it preferred treatment. Figure 6.2 illustrates this.

At first glance, it may not be obvious how this methodology can provide us with QoS

reservations for individual flows since we are operating on aggregates of flows. In fact,

some service providers will not choose to use diffserv to provide individual reservations,

but will provide broad classes of service. For example, a provider may guarantee that Gold

traffic gets better service than Silver traffic, which gets better service than Bronze traffic,

43

Core Router

High-Priority Queue

�

Normal-Priority Queue

�

Edge Router

If packet is Alain's

then mark high-priority

�

else
�

mark normal-priority
�

Edge Router

If port-number=video-port

then mark high-priority

�

else
�

mark normal-priority
�

Internet

�

Alain's Computer
 Teleconference Center

�

Edge Interface

�

Core Interface

�

Figure 6.2: An example of differentiated services. Two edge routers each recognize certain
kinds of packets as being important and mark them as priority traffic. The core router
can then treat these marked packets as high priority without recognizing particular QoS
reservations

and users sign up for a particular class of service for all of their traffic. However, with

careful admission control at the edges of the network and careful provisioning in the core

of the network, it is possible to provide QoS reservations with diffserv, as described below.

The marking in a packet is called the Differentiated Services Code Point (DSCP). A

DSCP indicates a particular treatment that a router should provide. This treatment is known

as a Per-Hop Behavior (PHB). Note that this treatment is not a global or end-to-end behav-

ior, but a treatment at a single router. If we want end-to-end services, we need to build them

out of PHBs. Currently the Internet Engineering Task Force (IETF) has defined two types

of PHBs: Expedited Forwarding and Assured Forwarding.

44

Expedited forwarding Packets marked with the Expedited Forwarding (EF) PHB can be

intuitively thought of as being assured that they will be transmitted as quickly as possible,

with as little delay as possible (and therefore as little jitter as possible) and with no loss of

packets, as long as the EF packets do not exceed a certain rate. Packets that do exceed the

configured maximum rate are dropped, so as not to interfere with other traffic.

EF is defined more precisely as:

The EF PHB is defined as a forwarding treatment for a particular diffserv ag-

gregate where the departure rate of the aggregate’s packets from any diffserv

node must equal or exceed a configurable rate. The EF trafficshouldreceive

this rate independent of the intensity of any other traffic attempting to transit

the node. Itshouldaverage at least the configured rate when measured over

any time interval equal to or longer than the time it takes to send an output link

MTU sized packet at the configured rate. [33]

However it should be noted that although the IETF published the RFC describing the

EF PHB on the standards track, discussion continues as this dissertation is being written

about what the actual definition of EF should be, and the final definition will be slightly

different than the current definition. However, if you keep the above intuitive description

in mind, you will have a good feeling for how EF should behave.

EF can be implemented in a straightforward way using Priority Queuing (PQ). PQ

allows a single class of packets in a router to always be sent before any other packets. That

is, there is a strict two-level priority, and the priority queue will always be empty before

the best-effort queue is serviced. (PQ can also be implemented with other methods such as

Weighted Fair Queuing, and even Weighted Random Early Detection, as demonstrated in

our earlier work.)

It should be clear that if we use PQ and assign only EF packets to the priority queue

that our packets will be sent as described above: they will be sent as quickly as possible

with as little delay as possible. Assuming we configure our routers carefully, they will also

not be dropped. However, there is one important concern with PQ: it is possible to starve

the best-effort traffic if there is sufficient priority traffic.

45

Dealing with starvation is also straightforward if careful admission control is done:

reservations should only be accepted if it will not create more EF traffic than can be handled

and traffic should be policed in the edge routers to ensure that no application sends more

EF traffic than it has made a reservation for.

Assured forwarding Assured Forwarding (AF) is a more complicated PHB than EF. AF

defines four classes of service. There is no ranking of the classes, but the service provider

defines how much of a router’s resources each class gets. This allows a service provider to

provide their own unique services to users, but makes it harder to build end-to-end services

that go through multiple domains.

Within each class, packets are assigned one of three different drop probabilities. This

is a way of marking packets that are more or less important so that if packets need to be

discarded, the less important packets are discarded first. For example in an MPEG movie

I frames are more important than P or B frames, so the P frames should be marked with a

lower drop probability and the P and B frames can be marked with a higher drop probability.

While it is possible to build higher-level network reservations using AF, it is harder

than with EF, because there is no clear definition of what the different classes mean, and

different domains might define the different classes differently. Therefore, it is hard to build

an end-to-end reservation service using AF. For this reason, in the experiments that follow,

we exclusively use the EF PHB. This is not to suggest that building end-to-end reservation

services with AF is impossible or not worthwhile, but rather that we chose to focus our

efforts on EF.

Managing network reservations

In GARA, a network resource manager provides admission control and network configu-

ration for a single network domain. The definition of a domain is not exact, but is a policy

decision. Generally the network domain will correspond to an administrative network do-

main. For example, a resource manager may control QoS within a University’s network.

When the resource manager receives a request for a reservation that goes through its

domain, it decides if there is sufficient bandwidth in the domain to allow the reservation.

46

When a reservation is granted, it will automatically configure the appropriate edge router to

classify traffic belonging to the reservation, police that traffic to ensure that it stays within

the limits of the reservation, and mark the traffic with the DSCP that corresponds to EF.

While the demonstrations that follow occur within a single network domain, it is possi-

ble to use GARA when a reservation needs to be made across multiple domains as shown

in Section 7.3.

Network QoS testbed

The network QoS resource manager was tested in a local-area testbed called the GARA

Advance Reservation Network Testbed (GARNET) at Argonne National Laboratory. (In

work with a collaborator, GARA was also tested in a wide-area testbed [51].) This testbed

can be seen in Figure 6.3.

dslnet1 (Sun)

�

dslnet2 (Sun)

�

Cisco 7507

�

Router

Cisco 7507

�

Router

Cisco 7507

�

Router

fjuk (Sun)

�

tuva (Sun)

�

bosporus (Linux)

�

Edge Interface

�

Core Interface

�

ATM Network

Fast Ethernet Network

�

Figure 6.3: The local-area GARNET Testbed.

All of the demonstrations that follow were performed on this testbed. The network

is composed of three Cisco 7507 routers and a large number of computers including four

Sun workstations, several Linux computers, and a multi-processor SGI computer. Note

that there were more computers attached at either end of the testbed than are shown in

Figure 6.3. Also note that the edge router connected to dslnet2 has two Fast Ethernet

interfaces while the edge router connected to dslnet1 has only one Fast Ethernet interface.

47

While it would be more convenient to have a second interface, one of the interfaces failed

and could not be replaced.

The Cisco routers provide mechanisms we used to implement the network QoS:

• Classification of trafficTo classify traffic, we used Cisco’s Modular QoS Command-

line interface (MQC), which allows an entire spectrum of packet classification from

loose specifications such as “all packets on this interface” to tight specifications such

as “UDP packets being sent from address/port to address/port”. GARA classifies

packets tightly, as in the second example. MQC also marks the packets with the

appropriate DSCP to indicate that packets should receive EF treatment.

• Policing To police traffic, we also used Cisco’s MQC. MQC allows traffic to be po-

liced at a specific bit rate, although it has to be an even multiple of 8 Kb/sec. Traffic

is allowed to have a burst rate using a token bucket mechanism, which allows short

periods of an increased bit rate. This prevents applications which do not have perfect

control over sending rate from losing packets when they occasionally send too fast.

• ShapingAlthough it is not used in any of the demonstrations below, MQC also allows

traffic to be shaped. This can be useful for applications that have difficulty controlling

their speed so that they do not have packets dropped. Applications that use TCP may

have particular difficulties with this, since TCP will often send traffic in bursts at

line speed. A close collaborator has done experiments with GARA and shaping,

described in [50].

• QueuingThe Cisco routers provide priority queuing that can be selectively applied to

different classes of traffic. Our routers are used to provide priority queuing to traffic

that has been marked as EF. The total amount of bandwidth that can be given to

priority traffic is configured in advance, not at runtime, by the system administrator.

Note that although we have used Cisco routers and mechanisms specific to these routers,

there is no intrinsic requirement to use them. In fact, a collaborator has modified the router

configuration portion of GARA (which is conveniently located in a script that is separate

from the main portion of the resource manager program) to configure Extreme routers

48

from Juniper Networks [32]. Extreme routers have capabilities similar to those of the

Cisco router, but are configured differently. However, it was straightforward to modify the

network resource manager to work with the Extreme routers.

Demonstration of network QoS

With this testbed, we have demonstrated our ability to provide network QoS. Although

many of the detailed results have been documented elsewhere ([25, 51, 50, 24]), we provide

an overview here.

In the demonstrations that follow, we used TCP and UDP traffic generators capable of

generating traffic at a constant rate. These traffic generators were used both for the traffic

that had reservations and the traffic that attempted to interfere with the reserved traffic

by causing congestion. The congestion traffic was always UDP traffic because UDP does

not slow down in response to congestion, unlike TCP, thereby allowing us to maintain a

controlled rate of congestion on the network.

UDP Figure 6.4 demonstrates a simple experiment demonstrating network QoS under

congestion. In this experiment, traffic was sent from fjuk to tuva (see Figure 6.3), while

congestion was sent from dslnet2 to bosporus. The router-to-router ATM links were config-

ured at 50 Mb/s to make them easier to fully congest. The application began sending data

and was able to meet its target speed of 20 Mb/s until congestion began. Shortly thereafter,

a reservation was made with GARA for the application, and the application was again able

to sustain its desired rate, until the reservation was canceled. At the end of the experiment,

the congestion was stopped.

Note that the application was not able to have a perfectly steady 20 Mb/s even when

there was no congestion and no policing enabled. This was due simply to the difficulty in

maintaining a high-speed but perfectly steady rate.

Figure 6.5 shows a similar experiment. In this case, there were 5 simultaneous streams

of traffic, each of a different rate. The start of the reservations were staggered because

the router was not particularly responsive to simultaneous attempts to configure it while

49

0

5000

10000

15000

20000

10 15 20 25 30 35 40 45 50 55

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

Figure 6.4: This graph shows the throughput an application attempting to send 20 Mb/s of
UDP traffic was able to receive. At about time 21, congestion began and the application
slowed. At about time 34, the application made a reservation and was able to sustain its
data rate although the congestion continued.

traffic was extremely heavy. However, it can be seen that the routers were able to maintain

simultaneous reservations while there was heavy congestion.

This example was particularly interesting because it did not involve five pairs of com-

puters but was done between a single pair of computers, so the streams of traffic were

competing for the same resources on the same machine. While the machine can clearly

handle it, it did affect the precise timing so that the applications did not receive perfectly

steady data rates.

TCP Providing network QoS to applications that use TCP is a tricky task. We have

found, in personal discussions with other researchers, that many people do not believe that

TCP is an appropriate protocol to use with network QoS. This is because TCP implements

congestion control mechanisms that slow down its transmission. When packets are lost in

networks, it normally indicates that there is congestion in the network, and TCP assumes

50

0

500

1000

1500

2000

0 10 20 30 40 50 60

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

1200Kb/s
1400Kb/s
1600Kb/s
1800Kb/s
2000Kb/s

Figure 6.5: Reservations for five simulatenous reservations for UDP traffic. See text for
details.

that lost packets indicate that it should slow down in order to be a good neighbor and help

to eliminate congestion.

When using network QoS such as the expedited forwarding service provided by GARA,

lost packets do not indicate congestion, but indicate that the application is sending data too

fast for its reservation. However, TCP does not react differently to packets dropped by the

policing mechanism and it slows down. In some cases, several packets in a row may be

dropped, causing TCP to go into slow-start congestion control, which slows TCP down

significantly below the reservation rate.

This can be seen in Figure 6.6, which shows a TCP application attempting to send data

at a steady rate of 20,000 Kb/s. We made three different reservations, to show the effects of

policing at different rates. There are two important lessons to be learned from this figure.

First, it is insufficient to make a reservation for the desired application rate, because it does

not take into account the packet overheads. Second, a reservation that is too small may

cause the TCP rate to fluctuate greatly.

51

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

10,000Kb/s Policing
20,000Kb/s Policing
21,000Kb/s Policing

Figure 6.6: The effects of under-reservation on a TCP stream. The application is sending at
20,000 Kb/s. Notice that when the reservation is for 10,000 Kb/s, the application receives
6,000 to 7,000 Kb/s. This is due to TCP’s congestion control.

However, making a reservation that is large enough does work for a TCP reservation,

as can be seen in Figure 6.7. In this figure, we have a TCP stream sending at a rate of

20 Mb/s. Around time 6, heavy congestion began (caused by the UDP traffic generator).

Immediately, TCP’s slow-start congestion mechanism forces TCP to slow down transmis-

sion to about one-sixth of the desired sending rate. A reservation began about time 16 and

lasted until about time 25. During this time, the TCP application was able to achieve its

desired traffic rate. After time 33, the congestion stopped, and the application was able to

operate at full speed with no reservation.

Figure 6.8 shows five simultaneous TCP streams. Congestion begins at about time 8

and the reservations begin in a staggered fashion after time 20. This figure shows that

everything “mostly works”. All of the streams were sent from a single source (fjuk, in

Figure 6.3) to a single destination (tuva). Not only was there competition between the

TCP streams and the UDP congestion, but the streams were competing on the source and

52

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

Figure 6.7: Demonstration of a network reservation for a TCP flow. Congestion began at
time 6 and end at time 33. A reservation was in place from time 16 to 25. See text for
details.

destination computers as well as the ingress and egress Ethernet interfaces on the testbed.

In any case, the reserved traffic shows performance as good as the performance when there

was no congestion. (Other than a single low point in the 2,000 Kb/s TCP stream.)

These results demonstrate that it is practical to provide QoS to programs that use TCP.

This is particularly important because many existing programs use TCP and users wish to

have QoS without rewriting the programs.

6.5.2 PBS resource manager

The Portable Batch System (PBS) resource manager was written independently of GARA.

PBS schedules batch jobs submitted to parallel computers or clusters of computers. Origi-

nally, PBS had no notion of reservations, and it would have been somewhat difficult to con-

nect with GARA, although it could have been implemented similarly to the DSRT wrapper

resource manager described below. A recent version of PBS added support for advance

53

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

B
an

dw
id

th
 (

K
b/

s)

�

Time

1200Kb/s
1400Kb/s
1600Kb/s
1800Kb/s
2000Kb/s

Figure 6.8: Demonstration of a network reservation for five simultaneous TCP flows. Con-
gestion began at time 8 and lasted until time 60. Reservations began in a staggered fashion
after time 20 and listed for about 15 seconds each. See text for details.

definite reservations, and it was straightforward to use GARA to make reservations using

PBS.

This was done by modifying the LRAM library—we did not need to build any addi-

tional resource managers. In this case, the fact that the LRAM is provided as a library

became particularly useful: the GARA service needed little modification, while the LRAM

library encapsulated the communication with PBS.

When a user requests an advance reservation from PBS both the start time and duration

are specified, as in GARA. PBS decides whether or not the reservation can be granted based

on the other advance reservations already granted and the maximum running times of all

the jobs it currently has. All jobs have a maximum running time, and if a job exceeds that

time, it is cancelled. Therefore, PBS can decide whether or not advance reservations can

be granted.

If a reservation is granted, PBS creates a queue. This queue will be active during the

reservation time and inactive at all other times. Users can submit as many jobs as they

54

desire to the queue, and they will be run normally, as long as the queue is active. When the

reservation ends, the queue will be removed, and any of the jobs that were running from

the queue will be removed.

PBS uses this queue name as an identifier for the reservation. Therefore, the LRAM

library encapsulates the PBS identifiers within the GARA reservation handle. Because the

GARA reservation handles are flexible and opaque to users, this was not a difficulty.

At the SC2000 conference, we demonstrated the advance reservations using GARA,

Globus’ GRAM service for running jobs, and PBS by making reservations for two comput-

ers at geographically remote locations. (See Figure 6.9.) We then submitted a job to both

computers before the reservation started. The jobs waited in the queue until the reservation

time began, then they communicated with each other using the Message Passing Interface

(MPI). Note that this is an example of co-reservation, which is discussed in Section 7.3.

PBS

GARA

�

GRAM

�

NASA

�

Langley

�

Multi-CPU

�

SGI

�

PBS

�GARA

�

GRAM

�

NASA

�

Ames

�

 Multi-CPU

SGI

�

Controller

�

MPI

Figure 6.9: At the SC 2000 conference, we demonstrated GARA using PBS and advance
reservations with the setup in this figure. NASA Langley is in Virgnia while NASA Ames
is in California. Advance reservations were made before the jobs were submitted and the
jobs communicated using MPI.

55

6.5.3 DSRT resource manager

The Dynamic Soft Real Time Scheduler (DSRT) is a user-level process that runs at a higher

priority than the Unix scheduler and takes over the work of scheduling in order to provide

soft real-time guarantees to applications. DSRT was built by a research group at the Uni-

versity of Illinois Urbana-Champagne and is described in detail in [9].

As described above, DSRT allows applications to make only immediate indefinite reser-

vations for scheduling. (It also allows immediate definite reservations to be made for very

short periods.) The reservations it provides are flexible: reservations can be made for a

periodic guaranteed time slice, for variable time slices specified with burst parameters, and

for adaptive reservations. Adaptive reservations allow applications that do not know how

much time they need to make their best guess, then receive help from DSRT in determining

the reservation that meets their needs.

To implement advance reservations on top of DSRT, we built a resource manager that

communicates with the DSRT scheduler using the DSRT API (see Figure 6.10). We then

perform admission control and reservation tracking just as we do for network reservations.

When a GARA reservation begins, we make an immediate reservation with DSRT. When

a GARA reservation ends, we cancel the immediate reservation with DSRT. We have to

assume that GARA is the only program that is allowed to make immediate reservations.

With that assumption, this scheme works well. In fact, with the current implementation

other programs can make reservations “behind our back” with DSRT, but if we were in-

terested in making a bullet proof implementation, we could easily modify DSRT to allow

only GARA to make reservations. The best way to do this would be to implement authenti-

cation and authorization using the mechanisms already available in Globus. Alternatively,

we could modify the DSRT scheduler to allow only one connection to the DSRT scheduler,

and the DSRT resource manager would make that connection.

While DSRT allows very flexible reservations, such as “I need 90ms out of every

150ms”, we chose to implement a simpler reservation scheme, that allows users to re-

quest a percentage of the CPU times. Our hope is that this sort of reservation can be easily

translated to other real-time schedulers with absolutely no change for users. We translate

a reservation of 85% of the CPU, for example, to be .085 seconds every .1 seconds. Other

56

DSRT

Admission Control

�

(Immediate Indefinite)

�

Process Scheduling

GARA Resource Manager

�

Admission Control

�

(Advance Definite)

�

Reservation Tracking

�

User Process

�

Figure 6.10: GARA works with DSRT by providing advance definite reservations on top
of DSRT. User processes make reservations with GARA instead of DSRT.

translations might be more or less effective depending on the application. It would not be

hard to extend the GARA reservation request to allow a finer granularity in the reservation.

For instance, instead of merely specifying a reservation description that contains:

&...(percent-cpu=85)...

it could optionally contain an extra field, cpu-interval:

&...(percent-cpu=85)

(cpu-interval=.1)...

This is likely to be fairly portable, and provide extra flexibility to the applications that

could benefit from it.

This implementation demonstrates the flexibility of the GARA architecture. We have

taken an underlying reservation system that allows only immediate indefinite reservations

and built an advance reservation system out of it. Also, DSRT is only accessible from Java

57

and C++ using DSRT-specific interfaces, while GARA can make reservations using DSRT

with the same interface used with other underlying reservation systems.

Figure 6.11 shows an example of using DSRT. This figure shows an application that

is sending a TCP stream at 80 Mb/s. At time 40, the application has made a network

reservation, and the competing traffic is not affecting it at all. However, at time 59, the

application is not able to send at its full rate because another application has begun using a

large portion of the CPU. At time 81 the bandwidth mostly returns to the full rate because

the application made a CPU reservation using GARA. (Actually, the reservation was made

by an external program. As we noted in Chapter 4, GARA is flexible about who actually

makes the reservation, and we took advantage of that flexibility here.) In our experience,

DSRT is not a perfect scheduler, but merely gave us “pretty good” results. This is due in part

to the fact that DSRT cannot prevent interrupts from affecting the time that an application

can receive. Nevertheless, the bandwidth with CPU reservation is significantly better than

without it.

Note that the particular “CPU hog” that competed for the CPU was a simple program

doing meaningless trigonometric math, but it could have well been another program. This

particular CPU hog was a consistent CPU hog, while other programs might only period-

ically hog the CPU, so this makes for a clearer demonstration. However, CPU QoS is

equally important whether the CPU competition is occasional or consistent.

6.5.4 Other resource managers

In addition to the resource managers described above, we developed several other bare-

bones resource managers, mostly to demonstrate the ease with which we could extend

GARA. In particular, we implemented:

• Priority CPU Resource ManagerThis resource manager allows reservations to be

made for a certain priority level. Only a single process may have a reservation at a

time.

• Exclusive CPU Resource ManagerThis resource manager was closely integrated

with the Globus job creation utility, GRAM. Any number of non-priority processes

58

0

20000

40000

60000

80000

100000

40 50 60 70 80 90 100 110

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

Reserved TCP Traffic
Competitive UDP Traffic

Figure 6.11: An example of using DSRT. At time 40, the application is sending a TCP
stream at 80 Mb/s with a network reservation. At time 59, competition for the CPU begins
and affects the performance of the TCP application until a CPU reservation begins at time
81.

are allowed to run simultaneously, unless a job with a reservation is running, in which

case all other processes are killed. That is, when a process with a reservation begins,

all other user processes are killed. This was used for a demo in which users wanted to

run lots of processes at a time, except during emergency times, when a single process

should have full access to a computer.

• Disk Space Resource ManagerThis resource manager allowed users to make reserva-

tions for disk space. Disk space was allocated using the quota system on a single con-

trolled disk. A better implementation would use a logical volume manager, because

the quota system does not allow the resource manager to clearly distinguish between

multiple reservations for a single user, while a logical volume manager would.

• DPSS Resource ManagerThe Distributed-Parallel Storage System (DPSS) [55] pro-

vides a high-performance, distributed, network-accessible data cache that can be

59

shared by many different users. It is usually used to provide access to very large

data files at very high speeds. To provide high speeds, several computers with sev-

eral disk controllers work together to provide the illusion of a single high-speed block

device that is accessible across a network.

Our resource manager allows applications to make reservations for exclusive access

to the DPSS server. While this does not guarantee any particular amount of band-

width, this does allow users to be confident that the DPSS server will be responsive

to their needs.

6.5.5 Notes on resource manager functionality

For the resource managers that we fully implemented, we were able to share a large amount

of code between the different resource managers. In particular, we implemented aslot

table for working with advance reservations. The slot table keeps track of all the advance

reservations in a linked list, and had a decision procedure to check if a new reservation

request can be admitted. The slot table works with a variety of reservation types because

it allows resource managers to specify the capacity of the reservation as a floating point

number without imposing an interpretation on the capacity.

In addition, other portions of the resource managers were shared, such as the commu-

nication libraries and the publication methods. For the publication methods, we allowed

information about the current reservations (without the users’ identity) to be published in

three different methods: to a human readable file, a web page, or a machine-interpretable

LDAP directory entry. Because of the method of implementing the publications, it is easy

to add new methods of publishing information about reservations should the current meth-

ods not be sufficient.

CHAPTER 7

VERIFICATION

In Section 4.2, we listed some of the main features of GARA. We believe that GARA is an

architecture that provides users with a great deal of power and flexibility. In particular, we

claim:

1. GARA’s modular design means that new QoS mechanisms are easily integrated into

GARA.

2. GARA’s feedback mechanisms provide a base for extensions that can significantly

extend GARA’s capabilities.

3. The GARA API makes it straightforward to develop higher-level functionality, in-

cluding reusable, multi-purpose services.

4. GARA mechanisms are sufficiently abstract that they can be incorporated easily into

higher-level programming models.

We will now look at each of these claims in turn.

7.1 Modular design

Claim: GARA’s modular design means that new QoS mechanisms are easily integrated into

GARA.

The best evidence for GARA’s modular design is a set of extensions to GARA that show

new QoS mechanisms that integrate easily. Since new QoS mechanisms are encapsulated

within resource managers, we will demonstrate GARA’s modular design by discussing

resource managers that demonstrate GARA’s flexibility.

60

61

As we discussed in Section 5.2, there are two ways to integrate resource managers.

There are resource managers that provide exactly what is needed, or one can create a wrap-

per resource manager that adds additional functionality to the resource manager. In either

case, the LRAM layer (described in Section 6.4) hides the details of communication with

the resource managers, allowing much of the arbitration layer to be unmodified. Once the

LRAM layer provides access to a resource manager the user can easily access the resource

manager through the standard GARA API.

Four different resource managers demonstrate the ease of integrating new QoS mecha-

nisms into GARA:

1. The PBS scheduler (Section 6.5.2) was easily integrated into GARA by modifying

the LRAM implementation to communicate with PBS directly.

2. The Dynamic Soft Real-Time CPU Scheduler (DSRT) was integrated by developing

a wrapper resource manager, as described in Section 6.5.3.

3. An alternative network resource manager was integrated into GARA by a research

group at LBNL [32]. While this network resource manager also used differenti-

ated services, it was an independent effort as part of the STARS project [31]. This

resource manager supplied everything that GARA requires a resource manager to

implement, although the internal mechanisms were often different than those used

in the GARA network resource manager described in Section 6.5.1. Unlike GARA,

it was implemented in C++ instead of C. However, this was transparent to most of

the arbitration layer, because it was encapsulated in the LRAM implementation. The

integration into GARA was about one day of effort.

4. A resource manager was developed to provide advance reservations for graphic

pipelines on SGI machines [13]. Some high-end SGI machines provide multiple

graphic pipelines which can be used locally or remotely to render graphics. Being

able to make reservations for a graphic pipeline can ensure that the pipeline can be

used by an application when it needs it. Once this resource manager was developed,

it was an easy matter to integrate it into the rest of GARA, again making just minimal

changes to the LRAM implementation.

62

These four resource managers demonstrate the variety of ways that resource managers

can be integrated into GARA. This variety encourages us to believe that a wide variety of

QoS types could be easily integrated. Indeed, in addition to the resource managers already

described, we have prototyped other resource managers, such as disk space and remote disk

bandwidth resource managers, as described in Section 6.5.4.

In all of these cases, the majority of work to integrate these new resource managers

into GARA was in changing the gatekeeper service to parse user parameters. Due to an

inflexible design, this was more complicated than it should have been. However, we believe

that a recoding of the gatekeeper service would significantly simplify this process without

affecting the rest of GARA.

We should note that, as flexible as GARA is, there are resource managers that do not

integrate as easily into GARA. For example, when a resource manager requires users to

use non-standard methods of access to resources, these resource managers do not benefit

much from integration into GARA. An example would be a disk bandwidth reservation

system such as Fellini [37], which requires users to use non-standard I/O functions to access

disks with reservations. While Fellini could be integrated into GARA, it would not mesh

well: users would use GARA to make reservations, but would be required to use Fellini

specific functions to access disk. If the underlying disk reservation system switched from

Fellini to an alternate system, users would be required to change their applications, which

is something that GARA attempts to avoid.

Although this is an important example because it shows the limits of GARA, we believe

that QoS mechanisms can be integrated into GARA without significant difficulty. These

QoS mechanisms can be easily used singly or in concert by GARA users.

7.2 Feedback mechanisms

Claim: GARA’s feedback mechanisms provide a base for extensions that can significantly

extend GARA’s capabilities.

In Chapter 4 we described GARA’s callback mechanism which is used to provide imme-

diate feedback about reservations to users. All resource managers are required to provide

basic feedback about reservations: when a reservation is beginning and when it is ending.

63

However, some resource managers are capable of giving additional feedback. This feed-

back comes from sensors in resource managers, as described in Section 5.3.2, and can be

fed into decision procedures (Section 5.3.3) to adapt the behavior of an application. We

have built two different adaptation methods based on GARA’s feedback to demonstrate the

utility of GARA’s feedback mechanisms.

GARA’s feedback mechanism is particularly flexible because the arbitration layer, de-

scribed in Chapter 4, melds the uniform abstract feedback interface provided to applications

with the resource-manager specific feedback. Resource managers do not need to interact

with users directly, but can focus on collecting sensor information that needs to be provided

to the application and passing it to the arbitration layer, which will handle the interaction

with the user.

Feedback to users is provided by two numbers. The first number is a constant describing

the type of feedback. The second, optional, number is additional data for the feedback.

Currently, there are four different types of feedback that GARA provides, and each one has

a constant identifying the type. The actual number that is provided is irrelevant, so we just

show the types below.

Type of Feedback Parameter

Reservation beginning None

Reservation ending None

Network reservation too smallPercentage packets dropped

Change data rate New data rate

The following two sections describe how we use the latter two types of feedback. These

demonstrations show the utility in having a general feedback mechanism in GARA, and

suggest the range of possibilities that it enables.

7.2.1 Learning bandwidth in applications

We first describe how adaptive techniques based on feedback can be used to determine

the bandwidth reservation required to support a particular UDP flow. The motivation for

this is that many application developers have no knowledge of QoS mechanisms or of the

64

principles by which QoS parameters are determined. We show that feedback provided by a

simple packet loss rate sensor can be used to guide a decision procedure that sets bandwidth

reservations adaptively, increasing reservations until loss rates reach zero. This decision

procedure can be incorporated in an application or in a separate agent. More information

about decision procedures and sensors can be found in Section 5.3.

Our decision procedure uses feedback provided by a packet loss rate sensor. This sensor

is part of the network resource manager described in Section 6.5.1. Periodically (usually

every ten seconds) the sensor queries the routers that police reserved traffic. Network flows

that send data too fast are policed and packets are dropped to ensure that they do not send

data over the reserved limit. The sensor can query the fraction of packets dropped,P , and

calculate1 − P which is the fraction of packets that conformed to the reservation. Our

decision procedure calculates what reservation would have been needed to ensure that no

packets would have been dropped, as follows, whereRo is the old reservation andRn is

the new reservation.

Rn(1 − P) = Ro (7.1)

or

Rn =
Ro

1 − P
(7.2)

To evaluate the effectiveness of this strategy, we performed experiments as follows.

In order to obtain a replicable experiment, we used as our application a test program that

sends UDP traffic at a user-specified rate across our testbed. The program and testbed are

the same as described in Section 6.5.1.

Results for two similar experiments are superimposed in Figure 7.1. In each case, the

application made an initial reservation for 2500 kilobytes per second (KB/s) but then sent

data at a higher rate: in the first case at 4000 KB/s and in the second case at 8000 KB/s. As

described in Section 6.5.1, the first router classified, policed, and marked traffic. Because

the router allows small bursts, the application initially was able to send slightly faster than

the reservation allowed, but then the data rate settled down to a constant 2500 KB/s.

65

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

K
B

/s
)

�

Time (s)

Reservation 1
Bandwidth 1

Reservation 2
Bandwidth 2

Figure 7.1: Here are two UDP flows that made reservations that were too small, but they
were able to adapt their reservations upon receiving feedback about packet loss from the
network resource manager. The bandwidth is less than the reservation because of packet
header overheads.

Our loss rate sensor is implemented by our network resource manager, which queries

the first-hop router every ten seconds and provides feedback to the application for every

query except the first. (The first query is not reported to the application because we wish to

gather statistically sufficient data.) Because the resource manager and application are not

synchronized in any way, the feedback arrives at slightly different times in the two cases in

the figure: at 16 seconds and 22 seconds, respectively.

The UDP application was able to adapt quickly in these experiments. However, be-

cause our router only updates packet drop statistics every ten seconds, the adaptation need

not always work so well. For example, if the router statistics were gathered just as a se-

ries of packets were starting to be dropped, a unrepresentative result may be reported to

the application. However, this problem would be compensated for after another round of

adaptation.

It is possible to adapt the rate of TCP flows in reaction to the same loss information.

66

However it is complicated by the fact that TCP does not send at a steady rate due to con-

gestion control mechanisms (see Section 6.5.1). Since applications cannot easily know the

internal state of TCP, it is hard to calculate a new reservation using Equation 7.2. One

possible solution is to use binary search for a reservation, as illustrated in Figure 7.2.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

K
B

/s
)

�

Time (s)

Bandwidth
Reservation

Figure 7.2: Here we see a TCP flow that uses binary search to discover the correct reserva-
tion for to use.

While it is likely that we can significantly improve upon the speed of finding a correct

reservation in the TCP case, the important point is that the ability to adapt is because GARA

provides the appropriate feedback mechanism. The packet loss sensor works with GARA’s

feedback mechanism and allows different types of applications (UDP- and TCP-based) to

adapt their behavior.

7.2.2 Bulk data transfers

We experimented with an additional interesting service, built on top of differentiated ser-

vices, called bulk-transfer. There are times when people need to transfer data quickly, but

not at a particular rate. For instance, they may need to transfer a 10 TB file “by tomorrow,

67

6:00AM”, but they do not care about the actual transfer rate at a particular time, as long as

the file transfer is completed in time.

Our bulk-transfer service is a substrate on which one could build such a file transfer

service. It allows a reservation to be made for all of the bandwidth that is not currently

in use by other reservations, up to the maximum allowed for premium reserved traffic.

However this does not prevent other new reservations from being made but, as other, non

bulk-transfer reservations are made, the amount assigned the bulk-transfer goes down ac-

cordingly. When the other reservations are no longer active, the amount is given back to

the bulk-transfer reservation. The bulk-transfer reservation is always kept informed of the

total bandwidth assigned to it using the callback mechanism described in Sections 4.3.2

and A.1.7.

A simple demonstration of the bulk-transfer service working can be seen in Figure 7.3.

In the figure, the bulk-transfer initially makes a request for bandwidth and receives all of the

40 Mb/s available, and it is able to send data using TCP at a constant 40 Mb/s even though

congestion begins at time 10. Three other reservations are made in succession, at times

23, 75, and 128. During each of these reservations, amount provided to the bulk-transfer

application is decreased. When the application is informed of the decrease, it adapts to

the new bandwidth. Note that when it adapts to the decrease, the applications transfer rate

briefly drops more than it should. This effect occurs because the application is adapting the

frequency at which it writes to the TCP socket buffers at the same time that TCP is adapting

and reacting to a few packets dropped when the policing limit is decreased.

Figure 7.4 shows the results when this experiment was repeated between our testbed and

a testbed at Lawrence Berkeley Labs in California. Notice that the result is similar, except

that it takes longer for the application to adapt, particularly in one case. The particularly

slow adaptation between time 40 and 48 was due to a combination of a bad device in the

network and the larger TCP windows that are needed to sustain high performance in wide

area networks do not allow adaptation to occur as quickly.

Our current implementation of bulk-transfer is a bit simplistic, and it needs two im-

provements to become a useful service. First, we currently only support one bulk transfer

flow per domain. It is a straightforward extension to add multiple bulk transfers by simply

sharing the bandwidth equally between all of the bulk transfers. Second, bulk transfers

68

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

Foreground
Bulk Transfer
Competetive

Figure 7.3: Bulk transfer in our local area testbed. See text for details.

should be able to specify a total amount of data that needs to be transferred, and a deadline

by which time they need to transfer that data. If a total amount of data and a deadline are

specified, one can derive a minimum bandwidth needed to fulfill the deadline. We can then

calculate a proportional share for each bulk transfer flow that ensure that this minimum

bandwidth is satisfied.

Assume that there aren bulk transfer flows, with minimum bandwidthsb0, . . . , bn−1.

At any given time, there is unused bandwidthU , and we know that

U >=
i<n∑
i=0

bi

This is because we do admission control to ensure that each bulk transfer flow will

always have its minimum bandwidth. We will assign each actual bandwidth,Bi as:

Bi = U · bi∑j<n
j=0 bj

69

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120 140 160 180

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

Foreground
Bulk Transfer
Competetive

Figure 7.4: Bulk transfer in a wide area network. See text for details.

This gives a proportional share of the bandwidth, and ensures that each flow gets its

minimum bandwidth. An optimization could be to decay the minimum bandwidth when

the application is able to send at rates greater than the minimum bandwidth, thus allowing

more bandwidth to be given to other flows. This allows the links to be shared, while still

assisting the bulk transfer flows in finishing as soon as possible.

Although these are important improvements to make, they do not hide our main point:

GARA’s feedback mechanism can be used in new ways to provide interesting QoS services.

7.2.3 Other feedback services

The previous two sections have described two ways of using GARA’s feedback mecha-

nisms. Because GARA has a general-purpose feedback mechanism, it would be easy to

provide other useful types of feedback to applications, including notice that a reservation

has been preempted. For example, when more complicated policy decision procedures are

added to GARA, it may be possible that a reservation for an important person, such as

70

the chair of the department, could preempt reservations for less important people, such as

graduate students. In this case, the feedback mechanism could inform applications that

their reservation has been revoked.

Another example type of feedback would be notice of over-reservation. If users have

to pay for reservations, they would appreciate feedback indicating that their reservation

is larger than the capacity they are actually using. A resource manager could detect this

situation and use the feedback mechanism to inform the user.

Feedback is useful in building co-reservation agents (discussed below in Section 7.3). If

a co-reservation agent makes multiple advance reservations on behalf of a user, it can mon-

itor the reservations before they begin. If a reservation is cancelled because of preemption

or because a resource becomes unavailable, the agent can be notified using feedback, and

it can react by making finding alternate resources that can be reserved.

7.3 Uniform interface and layering

Claim: The GARA API makes it straightforward to develop higher-level functionality, in-

cluding reusable, multi-purpose services.

GARA provides an interface that allows users to make single reservations for quality of

service. Each reservation can only be for a single resource. Often, this is sufficient because

users only need to use a single shared resource which is the limiting factor. For example,

a user may have exclusive access to multiple computers and disks, but is required to share

access to the network, so only a network reservation is needed.

Some users have more complex demands, such as needing multiple coordinated reser-

vations, orco-reservations. Although GARA does not provide co-reservations, it simplifies

construction ofco-reservation agents, because such agents can concentrate on the complex-

ities involved in making multiple reservations without having to also interact with different

underlying reservation systems.

We have constructed two different co-reservation systems, to demonstrate the possibil-

ities that GARA provides. Both of these co-reservation systems reside in the high-level

services layer described in Section 4.3.1 and interact with the arbitration layer on behalf of

the user. Other high-level services can be built on top of these co-reservation systems.

71

7.3.1 The need for co-reservation

Much QoS research has concentrated on single types of reservations, whether network

reservations [15], CPU reservations [35], or disk reservations [37]. However, it is often

important to use different reservations at the same time. When multiple reservations are

made at the same time, we call itco-reservation.

Consider, for example, the scientific visualization application shown in Figure 7.5. Here

we have an application reading experimental results from disk, rendering the results by cre-

ating lists of polygons, and sending the results to a remote computer which then visualizes

the results. If the entire system is manually reserved to be used by the application alone,

perhaps by a phone call to a system administrator, then no QoS mechanism is necessary.

However, if we are using shared systems, any portion of the system could experience con-

tention, slowing down the scientific visualization. In particular we could have contention

for:

• the disk system where the experimental results are stored,

• the CPU doing the rendering,

• the network used for sending the rendered data,

• the CPU displaying the final results.

Server

�

Raw

Data

Rendering

Engine

Network

�

Client

�

Display

Figure 7.5: An example of an application that could benefit from co-reservation. Because
the reservation pipeline uses several different potentially shared resources, it is likely to
be beneficial for the application to make a reservation for each resource: disk, graphic
pipeline, computer, display, and network.

72

Any one or a combination of these systems could require the use of QoS. We need

to make reservations for each system to ensure that everything works smoothly when we

cannot predict what contention will occur in the future.

Figure 7.6 shows a concrete example of the usefulness of co-reservation. In this exam-

ple, an application is attempting to send data at 80 Mb/s using TCP. Because this is a fast

speed, the application can be easily disrupted by contention for the CPU. In the experiment,

the application experienced two types of congestion. First, there was network congestion

beginning at about time 15 and continuing to the end of the experiment. A network reser-

vation was made at time 40 to correct for this. Second, there was contention for the CPU at

about time 60 and continuing for the rest of the experiment. A CPU reservation was made

at time 80 to correct for this. From time 80 to 120, both reservations were active, and the

application was able to send data at its full rate.

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

Reserved TCP Traffic
Competitive UDP Traffic

Figure 7.6: Combining DSRT and differentiated services reservations. See text for details.

Although the application shown in Figure 7.6 was an experiment and not performed

with a real application, the point that it demonstrates is relevant and important:It is often

73

important to combine different types of reservations in order for an application to achieve

its desired performance.

7.3.2 A generic co-reservation agent

As described in the previous section, there are cases when someone wishes to perform com-

plicated co-reservation tasks. There are at least three factors that can make a co-reservation

task complicated:

• The number of reservations needed.If more than two or three reservations are

needed, it becomes complicated for a user to keep track of all of the reservations.

It is easy for the number of reservations to grow large. For example, if a user wants

to run a scientific job on two parallel machines, there might be a large number of

network reservations between many processes on the two machines, in addition to

disk bandwidth reservations for the individual processes.

• The number of choices.The user may have a number of choices about which re-

sources to use. For example, a user may need two IRIX computers with at least

256MB of memory, but there may be a large number of IRIX computers to choose

from. The choices may become difficult to sort through if, for example, the user also

wants to reserve space on a local disk on some of the machines, and not all of the

machines have local disk reservations available.

• Recovering from failure.While making the reservations, one of the reservation re-

quests may fail, which may require other reservations to be revised. Similarly, if a

resource fails sometime after a reservation has been made, the reservations may need

to be changed.

We have implemented a co-reservation agent to demonstrate how such a co-reservation

agent can work. While this co-reservation agent is relatively simple, it demonstrates the

ability to deal with reasonably large numbers of simultaneous reservations and the ability

to search through different choices.

Our co-reservation agent is implemented as an API that a programmer can use. It would

be easy to wrap this API in a program that users could interact with more directly.

74

Behavior of the co-reservation agent

The co-reservation agent is program-oriented. That is, it assumes that the user will be

running a certain number of programs, and will need reservations that are associated with

those programs. Therefore, the user describes his reservation needs as a set of process

descriptions, where each process description has a set of reservations that it needs. We

suspect this will work well for the majority of co-reservation needs, although some users

may not prefer the process-centric view of reservations.

Making a reservation Making a reservation is a five step process:

• The user provides two inputs to the co-reservation agent: the reservations that are

needed, and the resources that are available. For instance, the user may request reser-

vations for two computers, and a list of computers that can be chosen from. Actually,

the user does not provide the list of available resources directly, but a pointer to where

this list can be found. Currently, this list is provided as a file, but it could easily be

provided through a directory service, such as the Metacomputing Directory Service

(MDS) [17].

• Next, the co-reservation agent refines the possible candidates for compute resources

by eliminating the ones that do no have the appropriate characteristics. For instance,

if the user requires computers using Solaris 2.8, then computers using Linux can be

eliminated.

• Next, the co-reservation agent refines the possible candidates even further by looking

up the information that is available about reservations already made on the resources

in question. GARA normally reports information about the reservations that have

been made—see Section 5.1.4 for more information about reporting.

• Next, the co-reservation agent attempts to make the necessary reservations. Note

that, although the co-reservation agent eliminated resources that it knew to be already

too busy to accommodate the desired reservations, the resources may still refuse the

reservations. This could be for a number of reasons: other reservations may have

75

been made just after the co-reservation agent retrieved information about the reser-

vations or there could be a policy that declines the reservation for a reason that cannot

be known by the co-reservation agent. If a reservation request does not succeed, the

co-reservation agent uses depth-first search to choose other resources.

• Finally, if all of the reservations succeed, the co-reservation agent creates auni-

fied reservation handle. This acts just like the reservation handle described in Sec-

tion 4.3.2, but it encompasses enough information to recreate all of the reservation

handles associated with each of the reservations that were made. Just like individual

reservation handles, the unified reservation handle can be saved to disk, transferred

from program to program, and used in future API calls.

Describing reservation needs One of the inputs that the user provides to the co-

reservation agent is the list of reservations needed. An example of this input is in Figure 7.7.

Note that these needs match the example in Figure 7.5.

Compute ‘‘server’’
Architecture Sun
OS Solaris2.8
Network ‘‘client-resv’’ tcp to client 20Mbs
Disk ‘‘server-disk-resv’’ 20MB

Compute ‘‘client’’
Architecture Sun
OS Solaris2.8
Percent-CPU 0.7
Network ‘‘server-resv’’ to server 100Kbs

Figure 7.7: Co-reservation needs as provided to the co-reservation agent

There are two important things to notice about this list of needs. First, the needs are

organized around a list of the processes that will be used. Second, each of the needs and

processes have a unique name (the text in quotes) by which the user can refer to them later.

Launching programs When the user is ready to launch his processes, the co-reservation

agent handles the launching. The co-reservation agent uses the GRAM library [11], avail-

76

able as part of the Globus Toolkit [20]. The user merely provides a standard Globus Re-

source Specification Language (RSL) string describing each of the processes, but associates

each one with the name of the need that was provided when the reservations were described.

The co-reservation agent then simply launches each process.

Binding the reservations As described in Section 4.3.2, reservations need to be claimed

before they can be used. The processes that are launched can use the same co-reservation

API to bind the individual reservations by providing the name of the reservation and the

parameters that are needed to claim the reservation. The co-reservation API then properly

binds the reservation.

Extensions The co-reservation agent is useful as it is, but there are several ways in which

it could be improved. In particular, the co-reservation agent could support higher-level

descriptions of the needs of applications, such as “I want to send MPEG-2 video encoded

with the Sorenson codec at 20 frames per second”, and it could translate that into the

necessary bandwidth reservation. In general, this turns out to be a rather complicated task

worthy of extra research, particularly given the wide variety of applications that are not

multimedia applications—how does one characterize the bandwidth needs of a distributed

MPI-based climate modeling program?

Another enhancement to the co-reservation is resource discovery. The agent could dis-

cover resources in a more flexible manner than it currently does, perhaps by querying di-

rectory services as well as directly querying potential resources.

Finally, the co-reservation agent could be an independent process that users connect to

when they need operations with co-reservations to be performed. The advantage to this is

that when advance reservations are needed, the co-reservation agent can reliably track the

reservations and respond to failures and the client process and machines do not have to stay

active.

7.3.3 Multi-domain network reservations

As noted in Section 6.5.1, our differentiated services network resource manager only con-

trols the network in a single domain. While this is certainly useful, it is desirable to have

77

network QoS for traffic passing through multiple domains. In this section, we will consider

one method for handling multiple domains.

Consider the situation in Figure 7.8. Here we have a server in Network 1 sending traffic

to a client in Network 3. The server and client are in separate networks, and there is an

extra network between them as well, perhaps the network of a Internet Service Provider

(ISP).

Network1

�

Co-Reservation

�

Agent

�

Server

�

Client

�

Network2

�

Network3

�

Resource

�

Manager

Figure 7.8: Simple network co-reservation using a co-reservation agent. In this example,
the co-reservation agent is making a reservation for the network connection between the
server and the client.

Each of the three domains belongs to a different administrative entity, and it is unlikely

that any of these administrative domains wishes any other administrative domain to have

the ability to perform admission control for them or to configure their routers. Therefore,

each domain has its own differentiated services resource manager, and a reservation has to

be made with each resource manager in order to create an end-to-end network reservation

from the server to the client.

This situation is similar to the one that the co-reservation agent described in Sec-

tion 7.3.2 solves. Just as that co-reservation agent makes a reservation for each resource

that is needed, all we need to do is make a reservation in each of the three domains. Because

the co-reservation agent described in Section 7.3.2 is process oriented, it cannot be directly

used for the multi-domain network co-reservation, but the principle is exactly the same,

and is shown in Figure 7.8. The agent simply contacts each network’s resource manager

and requests a reservation through the network. These reservations can be made in parallel

to decrease the total time it takes to make the end-to-end reservation. If all of the reserva-

78

tions are accepted, then the agent can return a unified reservation handle for the end-to-end

network reservation, otherwise it reports failure.

We have implemented such a network co-reservation agent. It works similarly to the

process oriented co-reservation agent described in Section 7.3.2.

Unfortunately, there are disadvantages to this simple method. First, there is no way to

verify that a user requests a reservation in each domain encountered along the end-to-end

path, and this might cause other users’ reservations to not receive the bandwidth that was

guaranteed to them. Skipping domains in this way could be caused by either a broken

or malicious co-reservation agent. To understand why skipping domains could cause this

problem, look at Figure 7.9.

Net1

�

S1

�

S2

�

Net2

�

Net3

�

R1

�

R2

Ingress Router for Net2

Figure 7.9: This is a scenario that can cause difficulty with the simple network co-
reservation. See text for details.

Assume that, in this figure, S1 is sending data to R1 and S2 is sending data to R2. Both

of them are sending at 10 Mb/s. A reservation has been made for (S1,R1) in each of the

three network domains, but the reservation for (S2,R2) has only been made in networks 1

and 3, not in 2.

What happens in this case? The traffic from S1 and S2 will traverse network 1 with no

difficulty, but network 2 will not be expecting 20 Mb/s of reserved traffic, so the ingress

router in network 2 will police the traffic at a rate of 10 Mb/s instead of 20 Mb/s. (Such

policing is not strictly required, but is common in differentiated services networks.) That

means that some portion of both traffic streams will be dropped, since the ingress router is

policing based on the differentiated services code point, not on the individual reservations.

Therefore a portion of the traffic from S1 to R1 will be improperly dropped, and the guar-

antee for the reservation will not be fulfilled, all because the reservation for (S2, R2) was

incorrectly made.

79

Another disadvantage to this method of co-reservation is that it does not scale well be-

yond medium-sized grid environments because it requires the co-reservation agent to have

a knowledge of the domain to domain routing, which becomes unmanageable when a large

number of networks are involved. Although this is a disadvantage, it is not currently as

large a disadvantage as one might think because for the time being, rather few networks

support differentiated services, so there are no large scale networks that need to be sup-

ported. Also, the design of more scalable solutions to end-to-end network reservation is

not well-understood (although we sketch a solution below). Therefore this is a good, in-

terim scale solution that allows significant experimentation while differentiated services

network become more widely deployed and we begin to understand larger scale solutions.

In collaboration with other researchers, we have been involved in developing a scalable

end-to-end network co-reservation mechanism that solves these problems [8, 49]. Although

we have not described such solutions here, it should be clear that GARA enables a variety of

methods for providing co-reservations, because it provides a flexible and uniform substrate

for building services that insulates these services from the difficulties of interacting with

QoS systems.

7.4 High-level programming

Claim: GARA mechanisms are sufficiently abstract that they can be incorporated easily

into higher-level programming models.

It should not be surprising that we, the developers of GARA, found it rather easy to use

GARA within programs to gain access to QoS. It is much more interesting to ask if GARA

can be used easily by other programmers. Towards this end, we worked with the developers

of an implementation of the Message Passing Interface (MPI). This had two results. First,

we were able to discover that other programmers found GARA easy to work with. Second,

we were able to make network QoS available to high-performance scientific applications,

without the programmers of these applications having to understand GARA at all.

In our experience, scientific programmers prefer to not work with the common sockets-

based APIs, but prefer higher-level communication libraries such as MPI. Instead of just

80

the simple read/write primitives provided by socket-based APIs, MPI provides communi-

cation primitives that simplify parallel programming such as broadcast (send to all nodes)

and gather (receive from all nodes) operations. Adding support for QoS to MPI allows

programmers to work within their familiar environment.

Our prototype MPICH-GQ implementation combines elements of the MPICH-G2 (for-

merly MPICH-G) wide area implementation of MPI [27, 19] with GARA. Experimental

studies with simple MPI benchmark studies demonstrate our ability to deliver high perfor-

mance in the face of network contention.

Note: This section is a revised version of a paper [48] that was nominated for both the

Best Paper and Best Student Paper Awards at the Supercomputing 2000 Conference.

7.4.1 Quality of service and MPI

The communication structures associated with MPI applications are often significantly

more complex than in media applications (such as audio and video), in three principal

respects:

• Communication is often bursty: an application may compute for a while, then call a

communication function, then compute some more. In some cases, communication

can be overlapped with computation, but in others, computation ceases until com-

munication completes. Furthermore, communication structures and rates may not be

predictable.

• Communication is typically achieved via reliable protocols such as TCP. These pro-

tocols further complicate the communication structure, because a single application-

level message may result in many low-level communications, and packet loss may

trigger unexpected behaviors.

• Communication can involve many processes, rather than a single pair.

To illustrate the implications of these differences, consider a simple finite difference

application partitioned across two 8-processor multiprocessors connected by a wide area

81

network. A simple calculation of the total data volume exchanged by the application sug-

gests that the application maintains an average data rate of 1 Mb/s. Yet if we configure

our network to support a premium flow at this rate, we find that things do not perform as

we expect. The application immediately performs anMPI Sendinvolving a large buffer

(100 KB), depleting the token bucket and causing packets to be dropped. TCP enters into

slow start mode and starts sending more slowly, gradually building up its send rate until

packets are dropped again. The result is an extremely low communication rate and an un-

derutilized network. The provision of QoS for such applications requires new methods and

mechanisms.

Figure 7.10 illustrates the types of problems that can arise. Here, we deal with a simple

TCP program that is attempting to send data at approximately 50 Mb/s over a congested

network, with a reservation that is somewhat too low (40 Mb/s). As we see, the bandwidth

obtained by this program varies wildly: every time TCP kicks into slow start mode, the

bandwidth drops significantly, then slowly increases until packets are dropped again.

20000

25000

30000

35000

40000

45000

50000

55000

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

TCP Flow
Reservation

Figure 7.10: An application using TCP has made a reservation for only 40 Mb/s, when it is
sending at 50 Mb/s.

82

The fact that a typical MPI program may involve large numbers of communicating

processors complicates things further. We need to bind all relevant flows with underlying

QoS mechanisms; in addition, multiple concurrent TCP flows can lead to some interesting

inter-flow interactions.

7.4.2 MPICH-GQ

MPICH-GQ extends the MPICH-G2 wide area implementation of MPI and leverages

mechanisms provided by the GARA QoS architecture to deliver QoS support for MPI ap-

plications.

Figure 7.11 shows the principal components of the MPICH-GQ architecture. These are

as follows:

• TheMPICH implementation of MPI[27] is extended in a standards-compliant fash-

ion so that MPI’s attribute mechanisms can be used to communicate with the under-

lying QoS system. (Note that we have prototyped this, but the results presented used

a slightly different mechanism.)

• An MPI QoS Agentincorporates the rules used to translate application-level QoS

specifications into the lower-level commands and parameters required to implement

QoS.

• As in MPICH-G2, aGlobus device[19] provides low-level security, startup, and

other functions for wide area networks.

• TheGlobus I/O libraryprovides a convenient wrapper for the low-level socket calls

used to implement wide area transport; traffic shaping can also be performed here.

• TheGARA system[22] is used to reserve premium bandwidth and to control physical

devices such as routers and computers.

• The physical devices themselves are controlled via their implementations ofdiffer-

entiated servicesand other mechanisms.

83

MPI Applications

MPICH extended to support QoS

Globus Device:

security, startup, I/O

MPI QoS

Agent

Globus I/O

GARA: QoS Reservations

QoS-Enabled

Networks

(Differentiated

Services)

QoS-Enabled

CPU

(DSRT)

Figure 7.11: The MPICH-GQ Architecture

At the time of writing, we have prototyped significant fractions of the MPICH-GQ

architecture—enough to conduct the experiments described below—but do not have a com-

plete implementation. The major component that we have not yet constructed is the MPI

QoS Agent. As we describe in the next section, we currently bind QoS parameters directly

to application-level flows.

Application-level QoS specification

The Message Passing Interface (MPI) standard was designed to support high-performance,

scalable message passing for communication between two or more processes. The major

parts of this programming model are well known (see [28, 26, 29]).

A goal in designing MPICH-GQ was to make QoS capabilities available within this

standards-based framework. One consequence of this goal is that we cannot extend MPI

arbitrarily. For example, it might be convenient to introduce anMPI Setqosfunction, but

MPI programs that used it would no longer be standards compliant or portable to different

MPI implementations.

84

Fortunately, the MPI standard provides an elegant solution to the problem of enabling

application-level tuning without compromising portability, namely itsattributemechanism.

This part of the MPI specification was introduced with the specific goal of allowing users

and implementers to share information to enable faster or more reliable communication.

In the MPI programming model, all communication takes place within acommunicator.

A communicator is simply a group of processes, with an additional, unique communication

context that ensures that messages sent in one communicator cannot be received in another

communicator.

The application programmer can create, set, or getattributesthat are maintained on a

communicator-by-communicator basis. An attribute is identified by an integerkeyval. The

value of an attribute (in C and C++) is a pointer, thus providing a standard-conforming way

of retrieving information from the MPI implementation (MPI Attr get with a predefined

keyval) and providing information to the MPI implementation (MPI Attr put).

MPICH-GQ exploits this attribute mechanism to exchange information between the

user’s application and the MPI implementation, usingMPI Attr put to specify required

QoS andMPI Attr get to see whether the requested QoS is available. Because attributes

are specific to a particular communicator, it is possible, by careful creation of appropriate

communicators, to target both queries and requests to specific links or sets of links. Note

that the action of putting the attribute actually triggers the request for QoS, which is slightly

different than the normal usage of attributes, which do not trigger actions.

In our work with MPICH-GQ, we focus initially on QoS attributes that are applied to

two-party intercommunicators and on the techniques required to communicate low-level

specifications of required QoS to the underlying QoS system. A typical specification is

illustrated in Figure 7.12. The QoS class may be “best-effort” (i.e., no QoS), “low latency”

(suitable for small message traffic [51, 50]: e.g., certain collective operations), or “pre-

mium.” The maximum message size allows us to translate application reservation sizes

to network reservation sizes, because it is possible to calculate the amount of protocol

overhead. Extensions to ensembles of processes will be considered in the future, as will

more interesting mappings from QoS specifications expressed in terms meaningful to MPI

programmers, such as MB/s or messages per second.

85

struct qos_attributes
{

u_int32_t qosclass;
/* Peak bandwidth in kbps */
double bandwidth;
/* Max size used in MPI_Send */
int max_message_size;
char *gatekeeper;

} attributes;
...

MPI_Attr_put(comm, MPICH_QOS, &attributes);
MPI_Attr_get(comm, MPICH_QOS,

&attributes, &flag);

Figure 7.12: QoS-enhanced MPI code to set and check the QoS parameters associated with
a communicator.

The features just described allow for QoS specification internal to an MPI application.

In addition, it can be useful to allow for external management of QoS by a separate QoS

agent. To support this feature, we also define a function that can extract the necessary

information (basically port and machine names) from a communicator.

Support for TCP flows

An MPICH-GQ call to GARA that requests the reservation of network resources for an

MPI application flow must ultimately be translated into calls to resource-specific control

functions to configure the routers (and/or CPU schedulers, etc.) that implement QoS func-

tions. This configuration process is complicated by the fact that the application-level traffic

consists of one or more high-performance TCP flows. TCP’s flow control and congestion

control mechanisms [53, 10], while critical to the effectiveness of TCP in shared networks,

have the unfortunate consequences of making TCP traffic both bursty and sensitive to the

loss of individual packets [38, 34]. In a differentiated services-based system, this means

that we need both a large token bucket on the edge router and an accurate reservation value.

The GARA differentiated services resource manager (see Section 6.5.1) incorporates

configuration rules that allow it to set these values correctly. In brief, we configure the

86

token bucket depth to be

depth = bandwidth ∗ delay,

where “depth” is in bits, bandwidth is in bits per second, and “delay” is in seconds. How-

ever, the token bucket is usually specified in bytes, not bits, so the formula becomes:

depth = bandwidth ∗ delay ∗ 8.

In our local testbed, the delay is small: on the order of a millisecond or two. A two

millisecond delay would therefore suggest that the depth of the bucket should be

bandwidth ∗ 2

1000
∗ 8 = bandwidth/62.5.

However, to allow for larger bursts in traffic, we currently usebandwidth/40. As we

explain in Section 7.4.3 below, this value is not always adequate.

7.4.3 Experimental results

We present experimental results that demonstrate our ability to deliver QoS to MPI applica-

tions and also expose some of the difficulties that one encounters when dealing with bursty

MPI traffic.

Our experimental configuration is the same testbed that was described in Section 6.5.1,

and further description can be found there.

QoS and MPI: ping-pong

We first present MPICH-GQ results for a simple “ping-pong” program, in which two pro-

cesses repeatedly exchange a fixed-sized message viaMPI Send and MPI Recv calls.

While artificial, this communication pattern is characteristic of many SPMD applications.

Figure 7.13 shows the one-way throughput obtained by this program as a function of

reservation size, for four different message sizes, in the face of heavy contention. Con-

tention is generated via a UDP traffic generator that is capable of overwhelming any TCP

87

application that does not have a reservation. (As the two processes exchange messages, to-

tal “throughput”—and reservation—is twice what is shown here, when summed over both

directions.) We do not show the results obtained in the absence of a reservation or in the

absence of contention (and with no reservation), but, in brief, performance is extremely

poor in the first case but is at the peak levels reached in the figure in the second case.

We see that the achieved throughput improves as the applied reservation increases until

the reservation is “adequate” for the message size in question, after which further increases

in reservation size have no significant impact. This is the general behavior that we would

expect: when the reservation is too low, packets are dropped. In fact, the throughput that

was observed was much lower than the reservation, until the reservation was large enough.

This is because TCP backs off when packets are dropped, as discussed above.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2000 4000 6000 8000 10000 12000

O
ne

-W
ay

 T
hr

ou
gh

pu
t A

ch
ie

ve
d

(K
b/

s)

�

One-Way Reservation (Kb/s)

8 Kb messages
40 Kb messages
80 Kb messages

120 Kb messages

Figure 7.13: The effect of different reservation sizes for the ping-pong MPICH-GQ pro-
gram. Each line represents the throughput achieved for a particular message size at different
reservation sizes.

88

QoS and MPI: distance visualization

Our next results are for an MPI program designed to emulate a distance visualization

pipeline. The program communicates a stream of fixed-sized messages from a sender

to a receiver at a fixed rate; both the rate (“frames per second” or fps) and the message

size (“frame size”) can be adjusted, hence varying both the generated bandwidth and the

burstiness of the traffic.

Figure 7.14 shows the throughput achieved by this program as a function of reservation

size for frame sizes of 40, 80, 160, and 240 Kb. (The rate was fixed at 10 frames per

second.) Once again, we see that the achieved throughput increases with reservation until

the reservation is “adequate.” However, in contrast to the ping-pong case, we see that the

performance at lower reservations is significantly worse than we would expect from simple

scaling. This effect is due to TCP congestion control strategies. We also see that we require

a reservation value of around 1.06 of the sending rate, because of TCP packet overheads.

0

500

1000

1500

2000

2500

0 400 800 1200 1600 2000 2400

B
an

dw
id

th
 A

ch
ie

ve
d(

K
b/

s)

�

Reservation (Kb)

Attempting 400Kb/s
Attempting 800Kb/s

Attempting 1600Kb/s
Attempting 2400Kb/s

Figure 7.14: The effect of different reservations on the visualization application attempting
different throughputs. Note that making a reservation that is even a little bit too small
dramatically decreases the throughput that is achieved.

89

The effect of burstiness

We outlined in Section 7.4.2 how MPICH-GQ currently attempts to deal with small bursts

of TCP by adopting a moderately large, but fixed, value for the size of the token bucket. We

present results here that demonstrate the impact that this value can have on performance.

In the experiments described, we used our visualization program to transmit data at

various rates, while varying both the burstiness of the traffic (1 frame per second or 10,

with the former featuring bursts that are ten times as large) and the size of the token bucket

(bandwidth/40: “normal” andbandwidth/4: “large”).

The results, shown in Table 7.1, demonstrate that there are limits to the size of the burst

that our “normal” token bucket depth can deal with: with the normal depth, the bursty

configurations needs an approximately 50% larger reservation.

Figure 7.15 provides an aid to visualizing the difference in burstiness between the two

programs. Note how the program running at ten frames per second has much smaller bursts

that are well spread out, while the program running at one frame per second sends all of

its data in one much larger burst, thus effectively giving it a larger bandwidth over a small

time interval.

These results present serious challenges for MPICH-GQ design. One approach to this

problem is to attempt to compute the “correct” token bucket size dynamically, by using

application-specific information and perhaps also dynamic network performance data [57].

However, collecting such dynamic data also expends scarce system resources. An alterna-

tive approach is to incorporate traffic-shaping support into the MPICH-GQ implementation

on the end-system.

Combining network and CPU reservations

Up to this point, we have only considered network QoS for MPI programs. Unfortunately,

as discussed in earlier chapters, it is not always sufficient to rely on network QoS. For ex-

ample, if there is contention for a CPU or disk, it may be necessary to use QoS mechanisms

to control access to the CPU and disk to ensure end-to-end QoS.

We have done experiments to demonstrate this necessity. In order to create and enforce

CPU reservations we are using the Dynamic Soft Real-Time CPU Scheduler [9]. DSRT

90

Table 7.1: The reservation required to achieve a specified throughput, for varying degrees
of “burstiness” (expressed in frames per second) and token bucket sizes. All bandwidths
and reservations are in Kb/s.

Reservation Required
Bandwidth Normal Token Bucket Large Token Bucket

Desired 10 fps 1 fps 1 fps
400 500 750 500
800 900 1450 900
1600 1700 2700 1700
2400 2500 3600 2500

works by overriding the Unix scheduler and performing soft real-time scheduling of select

processes. (See Section 6.5.3 for more information about DSRT.)

Figure 7.16 again shows a trace of our visualization application. At the beginning,

it is able to maintain a fairly steady throughput of 15Mb/s. However at 10 seconds, a

CPU-intensive application begins running on the same machine as the sending side of the

visualization application. This reduces the bandwidth significantly, so a CPU reservation

for 90% of the CPU is made at 20 seconds, and the visualization application again is able

to achieve its full bandwidth.

There are some interesting aspects to this example. When we first developed our visual-

ization application, our implementation of MPI was using TCP socket buffer sizes of 8KB

but was writing to the socket in chunks greater than 60KB. This had the effect of using a

large amount of user CPU time (as opposed to kernel time), so the effect of the CPU con-

gestion was more pronounced at smaller bandwidths. When we began using larger socket

buffer sizes, we had to significantly increase the bandwidth that the application was us-

ing before the bandwidth was affected by CPU congestion. This was because the network

communication was actually kernel time, not user time. In addition, our visualization ap-

plication was originally an inaccurate simulation of a visualization application: it sent a

chunk of data, slept for a short time, then repeated. Since the network writes were block-

ing, the application actually used little CPU time, and was not significantly affected by

the CPU contention. After a modification to make the visualization application do some

“work” between sending frames, it was more affected by the CPU contention.

91

60

40

20

0
10.80.60.40.20

Sequence Number

Time (s)

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

��

60

40

20

0
1.00.80.60.40.20

Sequence Number

Time (s)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

Figure 7.15: TCP traces of two programs that each send at 400Kb/s, but with different
burstiness characteristics. On the top is a program sending 10 frames per second, and each
frame is 40Kb. On the bottom is a program sending just 1 frame per second, and the frame
is 400Kb. (This corresponds to the first line of Table 7.1.) In each case, only one second of
the program’s execution is shown.

There are two lessons to draw from this experience. First, applications that use TCP and

want high performance need careful tuning (such as socket buffer sizes) to actually obtain

the high performance. Since MPICH-GQ applications do not use TCP directly, that burden

falls on MPICH-GQ directly. Second, it can be difficult to decide how best to optimize a

program: does it simply need to have TCP parameters tuned (a network optimization), or

does it need a CPU reservation (a CPU optimization), or does it need both? Applications

that have large bandwidths are much more sensitive to CPU contention, and may need CPU

reservations to achieve their desired performance.

Figure 7.17 shows another example of CPU reservations. In this case, the applica-

tion which is trying to send data at 35Mb/s encounters both network congestion and CPU

92

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

B
an

dw
id

th
 A

ch
ie

ve
d

(K
b/

s)

�

Time (s)

Figure 7.16: The bandwidth achieved by the visualization application. Contention for the
CPU on the sending side begins at 10 seconds, and a reservation is made at 20 seconds.

contention. The network congestion begins at time 10 and continues to the end of the ex-

periment, while the CPU congestion begins at time 30, and continues to the end of the

experiment. Both network and CPU reservations are made to overcome the resource con-

tention. This figure demonstrates that not only can network congestion and CPU contention

combine to decrease an application’s bandwidth, but it is possible to overcome such con-

tention in order to achieve good performance. Note that it is insufficient to make just a

network reservation or a CPU reservation: both reservations are needed.

Applications that use MPI often assume that they have exclusive access to a machine. If

exclusive access can be ensured with non-QoS mechanisms, then there is no need for using

systems like DSRT. However, it is clear that there are times when combining network and

CPU QoS mechanisms is advantageous.

93

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 A

ch
ie

ve
d

(K
b/

s)

�

Time (s)

Figure 7.17: A trace of the bandwidth achieved by the visualization application as it at-
tempts to achieve a constant 35Mb/s rate. Initially it runs well (0-10 seconds), then net-
work congestion affects its bandwidth (11-20 seconds) until a network reservation is made
(21-30 seconds). Bandwidth again decreases when there is CPU contention at the sender
(31-40 seconds) until there is a CPU reservation (41-50 seconds).

Demonstration with a real application

Although all of the experiments described above were done with simple testing tools, we

have used MPICH-GQ in a real scientific visualization application, similar to the artificial

visualization program described in Section 7.4.3. We demonstrated this application at the

IEEE/ACM Supercomputing 2000 Conference in Dallas, TX.

The demonstration was unique but straightforward. We used a scientific visualization

program that would send visualizations from server computers to visualization computers

across a network. A single movie can be displayed across on one to six different monitors.

Each additional monitor requires the addition of an extra server/visualization computer

pair, and increases the resolution of the movie being viewed.

For our particular demonstration, we showed two simultaneous movies, each showing

on two monitors, as shown in Figure 7.18. Each movie was uncompressed and ran at

94

about 50Mb/s. When network congestion was added, each movie clearly slowed down to

a crawl. When the QoS was turned on for one of the movies, that movie ran at full speed

while the other movie continued to move at a crawl. While we have no quantitative results

to show from this demonstration, the qualitative effect was clear and obvious: QoS really

can be provided to high-performance applications. Equally as important, it was trivial for

the application developers, who are visualization gurus, not network gurus, to add support

for QoS by using MPICH-GQ.

QoS

�

Movie

non-QoS
�

Movie

�

Viz. Server

�

Viz. Client Display

�

Router

}
Four-Panel

Display

Figure 7.18: The setup for the MPICH-GQ demonstartion. See text for details.

CHAPTER 8

FUTURE WORK AND CONCLUSIONS

8.1 Future Work

GARA provides many opportunities for future work. Because GARA is a modular system,

it is easy to add additional QoS mechanisms to support applications or to experiment with

alternate QoS mechanisms. Because GARA unifies different types of QoS under a single

umbrella, it is easy to build interesting new services that use GARA. Most importantly,

because GARA already provides a useful range of services, it is ready to be deployed for

regular use, and such deployment would provide valuable lessons. We will now look at

several interesting options for future work that GARA enables.

8.1.1 New types of QoS

Because GARA is a flexible, modular system, it practically begs for expansion. There are

a number of expansions that would be interesting to make, including:

• Different Network QoSThere are different underlying QoS mechanisms that can be

experimented with using GARA. For instance, we could experiment with using al-

ternate types of differentiated services, such as Assured Forwarding [30]. We could

experiment with Multiprotocol Label Switching [47], which is a promising technique

for not only speeding up packet routing, but can be used for providing QoS. GARA

makes it easy to develop these alternate network QoS mechanisms as well as other

ideas that develop in the future.

• Different CPU QoSGARA currently works with DSRT for real-time CPU schedul-

ing, but it would be worthwhile integrating with other systems like RT-Mach [39].

Similarly, GARA works with PBS for advance reservations on batch systems, but it

could also work with the Maui batch scheduler.

95

96

• Different types of QoSGARA could provide different types of QoS, such as guar-

anteed access to databases, exclusive access to software licenses, and other types of

QoS that will become apparent in the future.

8.1.2 Enhanced co-reservation

Currently the co-reservation agents built using GARA (see Section 7.3) are useful, but

relatively simple. Because GARA makes it easy to use different types of QoS, it enables

the development of such co-reservation agents. Agents could be built to optimize aspects

of the reservation, such total delay, cost, etc.

8.1.3 Policy

A common question that is asked about GARA is something like, “Well, what if there is no

room for an additional reservation, but the president of the university wants a reservation?”

The question comes in many forms, but at its core it points out an important area for future

work: the need to develop more flexible policy.

Currently, GARA implements only the simplest of policies: if a user can be authenti-

cated and is listed in the “allowed” list of users, then a reservation can be made. Clearly,

more interesting policies could be enabled. Are some users only allowed to make reserva-

tions on weekends? Can some users preempt other users? Can reservations have a mini-

mum or maximum request? Development of such interesting policies would be an excellent

enhancement for GARA. A good candidate for a policy mechanism would be a role-based

policy system [14].

8.1.4 Use in the real world

Although all of this future work is interesting and worthwhile, there is other work that

would do more to advance GARA in useful ways: using GARA in the “real world”. For

example, if we integrated GARA with a regularly used video-conferencing system that

required CPU and network QoS, we could gain invaluable experience in using advance

reservations and QoS on a daily basis. This would help in several important ways:

97

• User InterfaceHow do users want to interact with advance reservations of multiple

resources at the same time? It is unlikely that users will ever want to see the reser-

vation handles described in Chapter 4, or specify times in seconds since 1970. It is

likely that significant effort needs to be put into building an infrastructure to help

people interact with QoS and advance reservations. For example, we may want a

secure database for tracking reservation handles, so users can easily find and use the

reservations they have made.

• System StabilitySystem stability is more than simply fixing the bugs that inevitably

occur in the software. Does GARA scale well when tens or hundreds of users are

actively using it? How well do our low-level network QoS mechanisms work when

we use a production network that is heavily and unpredictably used? While we feel

that GARA is well-designed, there is no test like real-world usage to learn where the

faults lie.

• AcceptanceAs interesting as GARA is, not very many people use it, and the users are

all researchers. If people are exposed to the benefits of QoS systems, it will push the

development of better QoS systems, because people will actually want to use them.

This is a critical factor in the development of QoS systems.

8.2 Conclusions

As the previous chapters have shown, I have made three important contributions in this

dissertation:

The main contribution of this dissertation is an innovative, modular, and extensible QoS

system architecture (GARA) that ties together different QoS mechanisms. This architecture

is not merely a simple blending of mechanisms, but an interesting contribution in its own

right.

This dissertation also describes two other contributions. First, we have provided signif-

icant examples of how to simplify access to QoS: We have extended an implementation of

the widely-used Message Passing Interface (MPI) to allow programmers to easily request

network QoS, and we have demonstrated methods of combining multiple reservations. This

98

sort of integration is critical in making QoS more widely accessible. Second, we have

added to the understanding of mechanisms that can be used to provide QoS, particularly

for network QoS using differentiated services.

The combination of these three contributions demonstrates that it is possible to provide

a unified QoS system that is convenient for programmers to use and provides a useful

capability to high-end applications.

APPENDIX A

THE GARA API

A.1 Using GARA

Client programs access GARA through a library written in C. Any language that can link

to C libraries can use GARA. There is also a Java implementation, but it is not described

here. To use GARA, you will first need to have linked your program with these libraries.

You will need to include “globusgaraclient.h” to provide prototypes for the GARA func-

tions and constants. You will also need to include “globuscommon.h”, to gain access to

globus module activate() andglobus module deactivate() .

A.1.1 Initializing GARA

Before you can use GARA, you need to initialize it. GARA is initialized like other modules

in Globus, usingglobus module activate() :

globus module activate(GLOBUS GARACLIENT MODULE);

A.1.2 Describing a reservation request

Reservation attributes are described using the Resource Specification Language (RSL). An

RSL string is simply a list of attribute-value pairs that looks like:

&(attribute-1=value-1) (attribute-2=value-2) ...

(attribute-N=value-N)

99

100

An example RSL string for requesting a network reservation for 150 Kb/s between

looks like this:

&(reservation-type=network)

(start-time=953158862)

(duration=3600)

(endpoint-a=140.221.48.146)

(endpoint-b=140.221.48.106)

(bandwidth=150)

Note that this string was spaced out on several lines for readability, while RSL strings

do not have newlines in them.

Table A.1 lists attributes that may be used to specify a reservation. The universal at-

tributes are for all types of reservations, while the other attributes are for specific types of

resources. Note that the compute resource attributes are mutually exclusive.

A.1.3 Creating a reservation

Before you can create a reservation, you will need to describe your reservation,

as described in Section A.1.2 above. Then you request your reservation with

globus gara reservation create() :

int error;

char *request_rsl = "&(reservation-type=network)"

"(start-time=953158862) (duration=3600)"

"(endpoint-a=140.221.48.146)"

"(endpoint-b=140.221.48.106)"

"(bandwidth=150)";

char *reservation_handle;

error = globus_gara_reservation_create(gatekeeper_contact,

request_rsl,

&reservation_handle);

101

Table A.1: RSL attributes that can be specified when creating a reservation.
Attribute Units Default Required? Description
Universal Attributes

reservation-type Y .
Allowable values: “network”,
“compute”, or “disk”

start-time secs Y
“now” or time since 00:00:00
UTC January 1, 1970

duration secs Y Duration of reservations
Compute Resource Attributes

percent-cpu % 20
Percentage of the CPU’s time
given to the reserved process

number-of-nodes 1 Number of nodes needed.
Network Resource Attributes

endpoint-a Y

The machine at one end of
the network flow. The ad-
dress must be specified as a
dotted IP address, such as
140.221.48.162.

endpoint-b Y

The machine at the other end
of the network flow. The
address must be specified as
a dotted IP address, such as
140.221.48.162.

bandwidth Kbps 8 How fast a flow can transfer
data

directionality unidirectional-ab
Currently not implemented,
but this would allow bi-
directional reservations

Disk Resource Attributes

size KB
The storage space needed for
a single file.

bandwidth Kbps 8 How fast data can be read
from or written to a file.

102

Note that the gatekeeper contact is a string obtained from another location, such as the

MDS. An example gatekeeper contact may look like:

dslnet2.mcs.anl.gov:754:/C=US/O=Globus/O=Argonne

National Laboratory/OU=Mathematics and Computer

Science Division/CN=dslnet2.mcs.anl.gov

For more information on the gatekeeper and gatekeeper contacts, see

http://www.globus.org, and read about GRAM.

A.1.4 Modifying a reservation

Modifying a reservation is similar to creating a reservation, except that instead of providing

a gatekeeper contact, you provide the handle to the reservation that you created earlier:

int error;

char *request_rsl = "&(reservation-type=network)"

"(start-time=953158862) (duration=3600)"

"(endpoint-a=140.221.48.146)"

"(endpoint-b=140.221.48.106)"

"(bandwidth=150)";

char *new_reservation_handle;

error = globus_gara_reservation_create(reservation_handle,

request_rsl,

&new_reservation_handle);

A.1.5 Querying a reservation

If you would like to find out the status of a reservation, you can query it:

int error;

int status;

error = globus_gara_reservation_status(reservation_handle,

&status);

103

If there is not an error, the status will be one of:

GLOBUSGARARESERVATIONSTATUSNOTSTARTED

GLOBUSGARARESERVATIONSTATUSNOTSTARTEDBOUND

GLOBUSGARARESERVATIONSTATUSREADYNOTBOUND

GLOBUSGARARESERVATIONSTATUSACTIVE

GLOBUSGARARESERVATIONSTATUSFINISHED

A reservation is bound if a previous call toglobus gara reservation bind suc-

ceeded. A reservation is ready if the current time is later than the start time, and the dura-

tion has not yet elapsed. A reservation is active if it is both ready and bound. A reservation

is finished if the current time is later than the start time plus the duration.

A.1.6 Binding a reservation

When you are ready to use a reservation, you need to bind it in order to begin using the

reservation:

int error;

char *bind_parameters = "&(which-endpoint=a)

(endpoint-a-port=1234)

(endpoint-b-port=5678)";

error = globus_gara_reservation_bind(reservation_handle,

&bind_parameters);

Notice that the run-time parameters are specified as an RSL string. Currently, bind

parameters are only specified for compute and network reservations. For compute reserva-

tions that use percent-cpu, the only parameter to be specified is process-id, which specifies

the process ID of the process that will be receiving the reservation. For network reserva-

tions, there are three parameters:

• which-endpoint:If the reservation is being bound from a machine involved in the

reservation, this specifies which machine it is. The machine is either “a” or “b”, and

104

it matches what was specified in the reservation request. If a different machine is

binding the reservation on behalf of the processes involved, simply use “a”.

• endpoint-a-port:This is the port used by endpoint-a, as specified in the reservation

request. Because the current GARA implementation assumes that data is being sent

from endpoint-a to endpoint-b, this will be the port used by the sender.

• endpoint-b-port:This is the port used by endpoint-b, as specified in the reservation

request. Because the current GARA implementation assumes that data is being sent

from endpoint-a to endpoint-b, this will be the port used by the receiver.

Note that a reservation is not considered active until it is bound. Once a reservation

has both begun and been bound, then GARA does whatever setup is necessary in order to

ensure that the reservation is granted. It is okay if the reservation is bound before it has

begun, because GARA will wait to automatically enable the reservation once it begins.

If you will not be using a reservation temporarily but you will resume using it before it

has expired, you can unbind the reservation:

int error;

error = globus_gara_reservation_unbind(reservation_handle);

Unbinding a reservation may simplify operations for the underlying resource, or may

allow it more flexibility. Once you unbind a reservation, you may bind it again.

A.1.7 Using callbacks

If you would like to be informed whenever the status of a reservation changes (see Sec-

tion A.1.5 above), you can use a callback function. Once you register a callback function,

it will immediately be called once, to provide the current status, and will be called every

time the status changes afterwards. Note that more types of status can be provided to the

callbacks than to theglobus gara reservation status() function. For a complete

list of the different statuses that can be provided to a callback function, see the list in Sec-

tion A.2.1.

105

First you need to create a callback function:

static void callback_handler(

char *reservation_handle,

globus_gara_reservation_event_t event,

void *user_parameter)

{
/* Place code here to examine the event */

/* If it is a status event, event.event_type will be */

/* GLOBUS_GARA_STATUS_EVENT, and the status will be in */

/* event.event. */

if (event.event == GLOBUS_GARA_STATUS_EVENT)

{
if (event.event_type == GLOBUS_GARA_RESERVATION_STATUS_FINISHED)

{
/* React to reservation being finished */

}
}
return;

}

Then you need to register this function with GARA. You need to register the function

for each reservation that you wish to monitor:

int error;

error = globus_gara_reservation_callback_register(

reservation_handle,

callback_handler, /* pointer to above function */

NULL);

Note that the last parameter you pass to the registration function will be provided to

your callback function as theuser parameter .

106

If you would no longer like to have a function called when the status changes, you can

unregister it:

int error;

error = globus_gara_reservation_callback_remove(

reservation_handle,

callback_handler);

Note that you can register multiple callback functions for a single reservation handle.

A.1.8 Canceling a reservation

When you are finished using a reservation you should cancel it, using the reservation handle

that you obtained when you created the reservation.

globus_gara_reservation_cancel(reservation_handle);

When you cancel a reservation, all of the callbacks that have been registered for that

reservation will automatically be cancelled.

A.1.9 Deactivating GARA

When you have finished using GARA you should deactivate it, to allow GARA to clean

up:

globus_module_deactivate(GLOBUS_GARA_CLIENT_MODULE);

A.2 GARA reference

A.2.1 Constants

This section describes the constants used by the GARA API. You will find them all

either in “globusgaraclient.h” or in “globusgaracommon.h”. Note, however, that

“globus garaclient.h” includes “globusgaracommon.h” for you.

107

Errors

GLOBUSGARAERRORNONE:

No error has occurred.

GLOBUSGARAERRORUNKNOWN:

An error has occurred, but GARA just doesn’t know what it is.

GLOBUSGARAERRORMODULENOTACTIVE:

You have tried to use GARA without activating the module first.

GLOBUSGARAERRORBADPARAMETER:

A bad parameter, such as a NULL reservation handle, has been passed to a GARA

function.

GLOBUSGARAERRORZEROLENGTHRSL:

An RSL string was provided, but it is empty. It may be that this is never returned.

GLOBUSGARAERRORBADRSL:

There is an error, probably a syntax error, in the RSL string.

GLOBUSGARAERRORBADRESERVATIONHANDLE:

The reservation handle that was provided isn’t really a reservation handle.

GLOBUSGARAERRORCONNECTIONFAILED:

GARA was unable to connect to the gatekeeper.

GLOBUSGARAERRORAUTHORIZATION:

GARA was unable to authorize with the gatekeeper. Did you run grid-proxy-init?

GLOBUSGARAERRORGATEKEEPERMISCONFIGURED:

This is reported when there is a serious error in the setup of the gatekeeper. Talk to

your system administrator.

GLOBUSGARAERRORVERSIONMISMATCH:

This is reported when you are contacting an old gatekeeper. You will need to upgrade

to a newer gatekeeper to use GARA.

108

GLOBUSGARAERRORUNKNOWNRESERVATIONTYPE:

The reservation type in the RSL reservation request must be one of “network”, “com-

pute”, or “disk”, but it was not.

GLOBUSGARAERRORPROTOCOLFAILED:

There was a problem communicating with the gatekeeper.

GLOBUSGARAERRORMISSING RESERVATIONTYPE:

The reservation type in the RSL reservation request was not provided.

GLOBUSGARAERROROUTOF MEMORY:

A request for memory failed. You are in trouble!

GLOBUSGARAERRORMISSING ENDPOINTA:

A network reservation request didn’t specify endpoint-a.

GLOBUSGARAERRORMISSING ENDPOINTB:

A network reservation request didn’t specify endpoint-b.

GLOBUSGARAERRORCANTMAKERESERVATION:

The reservation cannot be made. Probably there are other reservations already at the

same time, and there is no room for your reservation.

GLOBUSGARAERRORPROBLEMWITH LRAM:

The most likely cause of this error is that the resource manager is not running or that

communication with it has failed.

GLOBUSGARAERRORHTTP UNPACKFAILED:

A serious protocol error happened, probably a programming error on our part, not

yours.

GLOBUSGARAERRORBADRESERVATIONOBJECT:

This error probably means that you tried to make a network reservation for an end-

point that the resource manager has not been configured to allow reservations for.

109

GLOBUSGARAERRORGARASERVICE EXECUTABLENOTFOUND:

The gatekeeper is misconfigured. In particular, it cannot find the

globus gatekeeper gara service executable.

GLOBUSGARAERRORCANTCONTACTRESOURCEMANAGER:

The resource manager is unavailable. Check to make sure that it is running.

GLOBUSGARAERRORUNKNOWNGRAMERROR:

Some error in the underlying “GRAM Gatekeeper” protocol has failed.

Callback and Status Constants

The following events are reported to callbacks:

GLOBUSGARASTATUSEVENT:

The status of the reservation has changed. See the lists of status constants below.

GLOBUSGARACHANGEEVENT:

The reservation has been preempted, or the reservation quantity (like bandwidth) has

changed. See the list of changes below.

GLOBUSGARAMONITOREVENT:

The reservation is apparently trying to use more than what it reserved. For network

reservations, the percent of packets that conformed to the reservation are reported in

the quantity parameter of the callback event structure (Section A.2.2). For more

information on how this can be used, see Section 7.2.1.

The following statuses can be reported to callbacks on a status event or in response to a

user calling globusgarareservationstatus.

GLOBUSGARARESERVATIONSTATUSNOTSTARTED:

The reservation has not yet begun (the current time is before the start time).

GLOBUSGARARESERVATIONSTATUSNOTSTARTEDBOUND:

Although the reservation has not yet begun, the reservation has been bound.

110

GLOBUSGARARESERVATIONSTATUSREADYNOTBOUND:

The reservation has begun (the current time is after the start time) but cannot yet be

used because it has not been bound yet.

GLOBUSGARARESERVATIONSTATUSACTIVE:

The reservation has begun and been bound.

GLOBUSGARARESERVATIONSTATUSFINISHED:

The reservation is over. That is, the current time is greater than the start time plus the

duration of the reservation.

The following changes can be reported on a CHANGEEVENT:

GLOBUSGARARESERVATIONCHANGEPREEMPTED:

The reservation has been preempted because a more important reservation has oc-

curred. Currently, this will not be reported, because preemption has not yet been

implemented.

GLOBUSGARARESERVATIONCHANGEQUANTITY:

The quantity (like bandwidth) has been changed. This occurs for bulk transfer reser-

vations, as described in Section 7.2.2.

A.2.2 Data structures

This is a description of the data structures used by GARA.

The Event Data Structure

typedef struct

{
int event_type;

int event;

double quantity;

} globus_gara_reservation_event_t;

111

This structure is provided to callback functions. The event type and event are constants

from the list above. The quantity is provided when the event is a change event indicating

that the quantity has changed.

Callback functions

typedef void (*globus_gara_reservation_callback_t)(

char *reservation_handle,

globus_gara_reservation_event_t event,

void *user_parameter);

This is the type of function that must be used for callback functions.

A.2.3 Functions

Note that all of the functions in GARA return an integer. This integer is the error code, if

any error occurred. See the list of errors in Section A.2.1.

globus gara reservation create

int globus_gara_reservation_create(

const char *manager_contact,

const char *reservation_specification,

char **reservation_handle);

Description:This function attempts to make a reservation.

manager contact: (IN) The contact string for the gatekeeper that controls access to the

resource manager for the resource you wish to make a reservation with.

reservation specification: (IN) An RSL string describing the attributes you wish to have

for your reservation. See Section A.1.2 above.

reservation handle: (OUT) If the reservation was successfully made, a pointer to your

reservation handle will be provided in this parameter. The memory for the reservation

handle is allocated byglobus malloc() , and it is your responsibility to free the

memory withglobus free() when you are done.

112

globus gara reservation modify

int globus_gara_reservation_modify(

const char *old_reservation_handle,

const char *reservation_specification,

char **new_reservation_handle);

Description:This function attempts to modify a new reservation. Note that if the reser-

vation is changed, you are provided with a new reservation handle. While current versions

of GARA will provide an identical reservation handle, future versions of GARA may not,

therefore we always return a new reservation handle.

old reservation handle: (IN) The handle for the reservation that you wish to modify.

reservation specification: (IN) An RSL string describing the new attributes you wish to

have for your reservation. See Section A.1.2 above.

new reservation handle: (OUT) If the reservation was successfully modified, a pointer

to your reservation handle will be provided in this parameter. The memory for the

reservation handle is allocated byglobus malloc() , and it is your responsibility

to free the memory withglobus free() when you are done.

globus gara reservation bind

int globus_gara_reservation_bind(

const char *reservation_handle,

const char *bind_parameters);

Description:This claims a reservation by providing run-time parameters.

reservation handle: (IN) The handle for the reservation that you wish to bind.

bind parameters: (IN) An RSL string describing the new attributes you wish to have for

your reservation. See Section A.1.6 above.

113

globus gara reservation unbind

int globus_gara_reservation_unbind(

const char *reservation_handle);

Description: This “un-claims” a reservation. The reservation is still valid and can be

used again by callingglobus gara reservation bind() again.

reservation handle: (IN) The handle for the reservation that you wish to bind.

globus gara reservation status

int globus_gara_reservation_status(

const char *reservation_handle,

int *status;

reservation handle: (IN) The handle for the reservation that you wish to query.

status: (OUT) The status of the reservation. It is one of the constants described in Call-

back and Status Constants.

globus gara reservation callback register

int globus_gara_reservation_callback_register(

const char *reservation_handle,

globus_gara_reservation_callback_t callback_function,

void *user_parameter);

Description:After this function successfully completes, the specified callback function

will be called whenever the status of a reservation changes. It will also be immediately

called once to provide the current status of the reservation. Note that multiple callbacks

can be registered for a single reservation.

reservation handle: (IN) The handle for the reservation for which you wish to receive

callbacks.

callback function: (IN) The function that will be called by GARA when the status of a

reservation changes.

user parameter: (IN) The value you provide here will be provided to the callback func-

tion unmodified.

114

globus gara reservation callback remove
int globus_gara_reservation_callback_remove(

const char *reservation_handle,

globus_gara_reservation_callback_t callback_function);

Description:After this function successfully completes, the specified callback function

will no longer be called when the status of the reservation changes.

reservation handle: (IN) The handle for the reservation for which you wish to receive

callbacks.

callback handle: (IN) The function that will be called by GARA when the status of a

reservation changes.

globus gara reservation cancel
int globus_gara_reservation_cancel(

const char *reservation_handle);

Description: This cancels a reservation. When a reservation is cancelled, the reserva-

tion handle (and copies of it) may not be used anymore. For example, if you try to bind the

cancelled reservation, it will fail.

reservation handle: (IN) The handle for the reservation that you wish to cancel.

globus gara version
int globus_gara_version(void);

Description:This returns the current version number for GARA.

globus gara reservation client debug
int globus_gara_client_debug(void);

Description:This enables debugging mode. Output will be printed to stderr.

globus gara client error string
const char *globus_gara_client_error_string(

int error_code);

Description:For any error code returned by GARA, this provides a printable string that

corresponds to the error code.

error code: (IN) The error code for which you wish to obtain a string representation.

115

A.3 Example program using GARA

This code has been greatly simplified but should give you the basic idea of how to use

GARA.

#include "globus_gara_client.h"

int reservation_ready = GLOBUS_FALSE;

static void callback_handler(

char *reservation_handle,

globus_gara_reservation_event_t event,

void *user_parameter);

int main(int argc, char **argv)

{
int error;

int seconds;

int test_index;

char *reservation_handle;

char *reservation_rsl_string;

/* Initialize */

globus_module_activate(GLOBUS_GARA_CLIENT_MODULE);

/* Make a reservation that starts in 20

* seconds and goes for an hour

* Of course, many of the RSL parameters would not

* actually be static in a real program. */

reservation_rsl_string = globus_malloc(256);

sprintf(reservation_rsl_string,

"&(reservation-type=network)(start-time=%d)

(duration=%d) (endpoint-a=%s)

116

(endpoint-b=%s) (bandwidth=%d) (protocol=tcp)",

(int) time(NULL) + 20, 3600,

"128.135.11.1", "128.135.11.6", 150);

error = globus_gara_reservation_create(

parameters.gatekeeper_contact,

reservation_rsl_string, &reservation_handle);

/* Set up a callback to let us know when the

* reservation is ready. */

error = globus_gara_reservation_callback_register(

reservation_handle,

callback_handler, NULL);

/* Wait for the reservation to become active */

while (!reservation_ready)

sleep(1);

/* Bind the reservation */

error = globus_gara_reservation_bind(reservation_handle,

"&(which-endpoint=a)

(endpoint-a-port=9999)

(endpoint-b-port=9999)");

/* Use the reservation... */

;

/* Remove the callback */

error = globus_gara_reservation_callback_remove(

reservation_handle,

callback_handler);

/* Cancel the reservation */

error = globus_gara_reservation_cancel(reservation_handle);

117

/* Clean up */

globus_free(reservation_rsl_string);

globus_free(reservation_handle);

globus_module_deactivate(GLOBUS_GARA_CLIENT_MODULE);

return 0;

}

static void callback_handler(

char *reservation_handle,

globus_gara_reservation_event_t event,

void *user_parameter)

{
if (event.event_type==GLOBUS_GARA_STATUS_EVENT

&& event.event==GLOBUS_GARA_RESERVATION_STATUS_READY_NOT_BOUND)

{
reservation_ready = GLOBUS_TRUE;

}
}

REFERENCES

[1] B. Allcock, J. Bester, A.L. Chervenak, I. Foster, C. Kesselman, V. Nefedova, D. Ques-

nel, and S. Tuecke. Secure, efficient data transport and replica management for high-

performance data-intensive computing. InIEEE Mass Storage Conference, April

2001.

[2] S. Blake, D. Black, M. Carlson, M. Davies, Z. Wang, and W. Weiss. An architecture

for differentiated services.Internet RFC 2475, December 1998.

[3] R. Braden, D. Clark, and S. Shenker. RFC 1633: Integrated services in the internet

architecture: an overview.Internet RFC 1633, July 1994.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation

Protocol (RSVP)-version 1 functional specification.Internet RFC 2205, September

1997.

[5] Eugene Burger.The Experience of Magic. Kaufman and Company, 1989.

[6] Andrew T. Campbell.A Quality of Service Architecture. PhD thesis, Lancaster Uni-

versity, England, January 1996.

[7] CCITT. Recommendation X.509: The directory – authentication framework. Tech-

nical report, 1988.

[8] P.F. Chimento et al. QBone bandwidth broker architecture. Work in Progress, avail-

able fromhttp://sss.advanced.org/bb/ .

[9] H. Chu and K. Nahrstedt. CPU service classes for multimedia applications. InPro-

ceedings of IEEE International Conference on Multimedia Computing and Systems.

IEEE Computer Society Press, 1999.

[10] D. Comer.Internetworking with TCP/IP. Prentice-Hall International Editions, 1988.

118

119

[11] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and

S. Tuecke. A resource management architecture for metacomputing systems. InPro-

ceedings of the IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel

Processing, 1998.

[12] Tom DeFanti and Rick Stevens. Teleimmersion. In[21] , pages 131–156. Morgan

Kaufmann Publishers, 1999.

[13] A. Demir, October 2000. Personal communication with Alper Demir of ISI.

[14] D. Ferraiolo, J. Barkley, and R. Kuhn. A role-based access control model and refer-

ence implementation within a corporate intranet.ACM Transactions on Information

and System Security, 2(1):33–64, February 1999.

[15] D. Ferrari and D. Verma. A scheme for real-time channel establishment in wide-area

networks.IEEE Journal on Selected Areas in Communications, 8(3):368–379, April

1990.

[16] D. Ferrari and D. Verma. Resource partitioning for real-time communication. In

Proceedings of the First IEEE International Symposium on Global Data Networking,

December 1993.

[17] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A

directory service for configuring high-performance distributed computations. InPro-

ceedings of the 6th IEEE Symposium on High-Performance Distributed Computing,

pages 365–375, 1997.

[18] J. Forgie. ST - a proposed internet stream protocol.Internet IEN 119, September

1979.

[19] I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous

distributed computing systems. InProceedings of SC’98. ACM Press, 1998.

[20] I. Foster and C. Kesselman. Globus: A toolkit-based grid architecture. In[21] , pages

259–278. Morgan Kaufmann Publishers, 1999.

120

[21] I. Foster and C. Kesselman, editors.The Grid: Blueprint for a New Computing In-

frastructure. Morgan Kaufmann Publishers, 1999.

[22] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A distributed re-

source management architecture that supports advance reservations and co-allocation.

In Proceedings of the International Workshop on Quality of Service, pages 27–36,

1999.

[23] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for com-

putational grids. InACM Conference on Computers and Security, pages 83–91. ACM

Press, 1998.

[24] I. Foster, A. Roy, and V. Sander. A quality of service architecture that combines

resource reservation and application adaptation. InInternational Workshop on Quality

of Service, pages 181–188, 2000.

[25] I. Foster, A. Roy, V. Sander, and L. Winkler. End-to-end quality of service for high-

end applications. Technical report, Mathematics and Computer Science Division, Ar-

gonne National Laboratory, Argonne, 1999.http://www.mcs.anl.gov/qos .

[26] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Nitzberg, W. Saphir, and

Marc Snir. MPI–The Complete Reference. Volume 2–The MPI-2 Extensions. MIT

Press, Cambridge, MA, 1998.

[27] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-

plementation of the MPI message passing interface standard.Parallel Computing,

22:789–828, 1996.

[28] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming

with the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[29] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, William

Nitzberg, William Saphir, and Marc Snir.MPI—The Complete Reference: Volume

2, The MPI-2 Extensions. Scientific and engineering computation. MIT Press, Cam-

bridge, MA, USA, 1998.

121

[30] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding PHB group.

Internet RFC 2597, June 1999.

[31] G. Hoo, W. Johnston, I. Foster, and A. Roy. QoS as middleware: Bandwidth broker

system design. Technical report, LBNL, 1999.

[32] K. Jackson, November 2000. Personal communication with Keith Jackson of

Lawrence Berkeley Laboratory.

[33] V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding PHB.Internet RFC

2598, June 1999.

[34] T. Lakshman, U. Madhow, and B. Suter. Window-based error recovery and flow

control with a slow acknowledgement channel: A study of TCP/IP performance. In

Proceedings of the IEEE INFOCOM. 1997.

[35] C. Lee, R. Rajkumar, and C. Mercer. Experiences with processor reservation and

dynamic QOS in Real-Time Mach.In the Proceedings of Multimedia Japan 96, April

1996.

[36] J. Linn. Generic security service application program interface.Internet RFC 1508,

1993.

[37] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and A. Silberschatz. The Fellini

multimedia storage server. In S. M. Chung, editor,Multimedia Information Storage

and Management. Kluwer Academic Publishers, 1996.

[38] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic behavior of the TCP conges-

tion avoidance algorithm. InProceedings of ACM SIGCOMM, volume 27, number 3.

1997.

[39] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves for multimedia

operating systems. InProceedings of the IEEE International Conference on Multime-

dia Computing and Systems, May 1994.

122

[40] K. Nahrstedt and J. M. Smith. The QoS Broker.IEEE Multimedia, 2(1):53–67, Spring

1995.

[41] K. Nahrstedt and J. M. Smith. Design, implementation and experiences of the

OMEGA end-point architecture.IEEE JSAC, Special Issue on Distributed Multi-

media Systems and Technology, 14(7):1263–1279, September 1996.

[42] K. Nahrstedt, D. Wichadakul, and D. Xu. Distributed QoS compilation and run-

time instantiation. InProceedings of the IEEE/IFIP International Workshop on QoS

(IWQoS’2000), Pittsburgh, June 2000.

[43] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated services

field (DS field) in the IPv4 and IPv6 headers.Internet RFC 2747, December 1998.

[44] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services architecture

for the Internet.Internet RFC 2638, July 1999.

[45] R. Nitzan and B. Tierney. Experiences with TCP/IP over an ATM OC12 WAN. Tech-

nical report, LBNL, April 1999.

[46] Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A. Reed. Autopi-

lot: Adaptive control of distributed applications. InProc. 7th IEEE Symp. on High

Performance Distributed Computing. IEEE Computer Society Press, 1998.

[47] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture.

Internet RFC 3031, January 2001.

[48] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and B. Toonen. MPICH-GQ:

Quality of service for message passing programs. InProceedings of the IEEE/ACM

SC2000 Conference, November 2000.

[49] V. Sander, W. Adamson, I. Foster, and A. Roy. End-to-end provision of policy in-

formation for network QoS. InProceedings of the Tenth IEEE Symposium on High

Performance Distributed Computing (HPDC-10), August 2001.

123

[50] V. Sander, I. Foster, and A. Roy. Implementing a premium service based on the expe-

dited forwarding per-hop behavior. Technical report, Argonne National Laboratory,

September 2000.

[51] V. Sander, I. Foster, A. Roy, and L. Winkler. A differentiated services implementa-

tion for high-performance TCP flows.The International Journal of Computer and

Telecommunications Networking, 34:915–929, 2000.

[52] J. Steiner, B. C. Neuman, and J. Schiller. Kerberos: An authentication system for

open network systems. InUsenix Conference Proceedings, pages 191–202. 1988.

[53] W. Stevens.TCP/IP Illustrated, Vol. 1 The Protocols. Addison-Wesley, 1997.

[54] Andrew S. Tanenbaum.Modern Operating Systems. Prentice Hall, Inc., 1992.

[55] B. Tierney, J. Lee, B. Crowley, M. Holding, J. Hylton, and F. Drake. A network-aware

distributed storage cache for data intensive environments. InProceedings of IEEE

High Performance Distributed Computing conference (HPDC-8), August 1999.

[56] M. Wahl, T. Howes, and S. Kille. RFC 2251: Lightweight directory access protocol

(v3). Internet RFC 760, 1997.

[57] R. Wolski. Forecasting network performance to support dynamic scheduling using the

network weather service. InProc. 6th IEEE Symp. on High Performance Distributed

Computing, Portland, Oregon, 1997. IEEE Press.

[58] D. Xu, K. Nahrstedt, and A. Viswanathan D. Wichadakul. QoS and contention-aware

multi-resource reservation. InProceedings of the 9th IEEE International Symposium

on High Performance Distributed Computing (HPDC-9), Pittsburgh, August 2000.

[59] J. Zinky, D. Bakken, and R. Schantz. Architectural support for quality of service for

CORBA objects.Theory and Practice of Object Systems, 3(1):55–73, January 1997.

	Abstract
	Acknowledgements
	List of figures
	List of tables
	Introduction
	Background
	Resources
	Reservations
	Quality of service
	Network quality of service
	CPU quality of service
	Storage quality of service

	High-end applications
	Distance visualization of large data sets
	Large data transfers
	High-end collaborative environments

	Providing QoS to high-end applications
	Heterogeneous network flows
	High bandwidth flows
	Need for end-to-end QoS
	Need for application-level control
	Need for advance reservation

	The solution

	Related Work
	OMEGA
	QoS-A
	2K and 2KQ
	QuO

	GARA, a framework for using quality of service
	High-level overview
	Main features of GARA
	GARA architecture
	High-level services layer
	Arbitration layer
	Resource management layer

	Summary
	Historical development of GARA and design decisions

	Resource Managers
	Purpose of a resource manager
	Kernel
	Admission control
	Advance reservations
	Bookkeeping and publication
	Resource Control

	Implementation of resource managers
	Design of a resource manager
	Actuators: online control
	Sensors
	Decision procedures

	Implementation
	Implementation overview
	Client interaction with GARA
	Gatekeeper
	GARA service
	Resource managers
	Network QoS resource manager
	PBS resource manager
	DSRT resource manager
	Other resource managers
	Notes on resource manager functionality

	Verification
	Modular design
	Feedback mechanisms
	Learning bandwidth in applications
	Bulk data transfers
	Other feedback services

	Uniform interface and layering
	The need for co-reservation
	A generic co-reservation agent
	Multi-domain network reservations

	High-level programming
	Quality of service and MPI
	MPICH-GQ
	Experimental results

	Future Work and Conclusions
	Future Work
	New types of QoS
	Enhanced co-reservation
	Policy
	Use in the real world

	Conclusions

	The GARA API
	Using GARA
	Initializing GARA
	Describing a reservation request
	Creating a reservation
	Modifying a reservation
	Querying a reservation
	Binding a reservation
	Using callbacks
	Canceling a reservation
	Deactivating GARA

	GARA reference
	Constants
	Data structures
	Functions

	Example program using GARA

	References

