
Chapter 23

GARA: A UNIFORM QUALITY OF
SERVICE ARCHITECTURE

Alain Roy
�

and Volker Sander
�

�
Department of Computer Science, University of Wisconsin-Madison�
Central Institute for Applied Mathematics, Forschungszentrum Jülich GmbH

Abstract Many Grid applications, such as interactive and collaborative environments, can
benefit from guarantees for resource performance or quality of service (QoS).
Although QoS mechanisms have been developed for different types of resources,
they are often difficult to use together because they have different semantics and
interfaces. Moreover, many of them do not allow QoS requests to be made in
advance of when they are needed. In this chapter, we describe GARA, which
is a modular and extensible QoS architecture that allows users to make advance
reservations for different types of QoS. We also describe our implementation of
network QoS in detail.

1. INTRODUCTION

Many computing applications demonstrate increasingly voracious appetites,
consuming ever more resources. From USENET to the spread of the World
Wide Web to peer to peer file sharing, the demand for bandwidth on the Internet
has been steadily increasing. Similarly, scientific programs used to measure
their speed in megaflops, but now strive for teraflops and process terabytes
instead of gigabytes [FK99b].

Just as data seems to expand to fill any size hard drive one can buy, today’s
most demanding applications strain the capacities of the networks, comput-
ers, and storage devices they use. When these applications must share their
resources with other applications, they may be unable to perform to the satis-
faction of their users. The problem is twofold: the resources are limited and the
amount of a resource available to a particular application fluctuates depending
on conditions beyond its control.

If an application does not have enough resources available to meet its perfor-
mance needs, there are only two general solutions: the capacity of the resources



378 GRID RESOURCE MANAGEMENT

available to the application can be increased (such as buying more bandwidth),
or the need for the resource can be decreased (such as decreasing the resolution
of a streaming video). Sometimes resources have sufficient capacity for one
application, but the actual capacity available to that application fluctuates be-
cause the resource is being shared with other applications. The most common
example of this is a network, which is almost always shared between multiple
applications. If we have such a shared resource and we cannot reliably have
constant and sufficient service from it, there are two general strategies we can
use. First, an application can adapt to the amount that is available. For exam-
ple, a video streaming application may decrease the resolution of the video it
sends when less bandwidth is available. Second, the resource may provide a
guarantee that it will provide a certain quality, such as an upper boundary for
the end-to-end delay, to the application. When a resource is able to offer such
a guarantee, it is said to offer quality of service, or QoS.

While some applications are capable of easily adapting or may need only a
single type of QoS, such as network QoS, others are very demanding and run
in complex environments. They may require combinations of several types of
QoS including network, CPU, and storage. Managing multiple resources with
QoS can be difficult for applications because each type of QoS is typically con-
trolled by a completely different system with different interfaces, capabilities,
and behavior. Yet this management is important, because without combining
different types of QoS, some applications may fail to operate well enough to
meet users’ expectations.

Additionally, applications often need to be scheduled. Sometimes an appli-
cation needs to run at a particular time, perhaps to perform a demonstration or
to be coordinated with some other activity. Other times, it is merely necessary
to find a time when different QoS constraints can be simultaneously satisfied.
In these examples, it is advantageous to be able to schedule the reservations
for QoS in advance of when they are needed. We call these advance reserva-
tions. More precisely, an advance reservation is obtained through a process of
negotiating a possibly limited or restricted delegation of a particular resource
capability from the resource owner to the requester over a defined time interval.

To address this demand, we believe that there must be a resource manage-
ment framework that is capable of providing a uniform interface to advance
reservations for different types of QoS. To fill this need, we have developed
such an architecture, the General-purpose Architecture for Reservation and
Allocation (GARA) to allow demanding applications to easily manage qual-
ity of service for the various resources used by the application. GARA is a
modular and extensible QoS system architecture that integrates different QoS
mechanisms.



GARA: A Uniform Quality of Service Architecture 379

2. A UNIFIED ARCHITECTURE FOR QUALITY OF
SERVICE

GARA provides a uniform mechanism for programmers to request QoS for
different types of QoS. Once such uniform mechanisms are in place, it simpli-
fies life for more than just the application programmer. It becomes possible to
easily create higher-level services that can manage multiple simultaneous QoS
requests on behalf of users. Perhaps the most important reason for having a
uniform architecture for QoS is that it allows for relatively easy expansion of
the services provided to users. As we will see below, GARA has a layered
architecture that allows developers to easily add new QoS providers.

GARA’s uniform architecture allows it to be easily used and extended by
Grid users and developers. GARA has four key features:

A uniform interface makes it easy to build services on top of GARA that
provide new features to end-users, such as the ability to make coordi-
nated reservations, or co-reservations.

The ability to request advance reservations, in order to schedule appli-
cations against other constraints, or in order to find a time when all the
QoS constraints will be able to be simultaneously met in the future.

A layered architecture that allows for easy extensions as new QoS reser-
vation mechanisms become available. For example, a graphical appli-
cation that makes CPU and network reservations can easily add reserva-
tions for graphic pipelines if that ability is added to the lower layers of
GARA. It is easy to add to the lower layers, and it does not require deep
understanding of the higher layers in order to do so.

GARA operates in a Grid infrastructure that includes a security infras-
tructure so that all reservation requests are securely authenticated and
authorized. Security is an important aspect for a system that allows
reservations, yet many QoS systems do not provide security. The Grid
infrastructure that GARA currently uses is Globus.

2.1 Architecture

2.1.1 A Generic Framework for Advance Reservation in Grid
Environments

GARA has a four-layer architecture, as illustrated in Figure 23.1.
The layer that most programmers would use is the GARA layer, which pro-

vides uniform remote access via the GARA Application Programmers Inter-
face (API). This layer provides three essential services. First, it allows reser-
vation requests to be described in a simple, uniform way. Second, when a



380 GRID RESOURCE MANAGEMENT

Information

service


Uniform, remote acess

(GARA API)


Resource manager

interface


Local Resource

managers


QoS Agent
 Application
High-Level Layer:


GARA Layer:


LRAM Layer:


Resource Manager

Layer:


Figure 23.1. GARA’s four-layer architecture. Applications and higher-level services use the
GARA API, which communicate securely with the local resource layer, which in turn commu-
nicates with resource managers. Applications also communicate with an information service to
find out information about resources for which they can make reservations.

reservation has been granted, it is described by a unique, data structure called
a handle that can be stored, transmitted, and used to refer to the reservation.
Third, it communicates with reservation services that may be located remotely
or locally.

Applications also communicate with an information service that can inform
them about likely reservations that can be made, and what to contact to make
them. By combining resource reservation and allocation with the ability to
search the information service, GARA offers a flexible framework for the con-
struction of higher-level scheduling services.

The GARA layer communicates with the LRAM layer. The LRAM layer
provides a resource manager interface that is responsible for authenticating
and authorizing that the user is allowed to make a reservation. This layer is
unaware of the specifics of the reservation, so it can only provide coarse autho-
rization such as “Alice can make reservations”, but not “Alice can only make
reservations for bandwidths less than ten percent of the available bandwidth”.
That fine-grained authorization happens at a lower-level because it often de-
pends on specifics of the available resource.

The LRAM layer is a “mostly uniform” interface to resource managers. It
is not completely uniform because it is unnecessary: this layer provides a thin
shim between the resource interface layer and the resource manager level be-
neath. It is the responsibility of this layer to translate all incoming requests so



GARA: A Uniform Quality of Service Architecture 381

that they can be presented to the resource managers that actually provide the
QoS reservations.

The resource managers in the resource manager layer are responsible for
tracking reservations and enforcing them by communicating with the lower-
level resources, such as the network.

Instead of applications, there may be higher-level services in a high-level
layer. These handle QoS requests for applications, often interacting with the
information service and making multiple reservations at the same time. Such
services are discussed in Section 3.

This four layer architecture allows for a uniform interface at the top, secure
access to remote resources, and any number of QoS implementations.

2.1.2 Resource Reservations: A High-Level Interface for Grid
Applications

Let us take an example of how a programmer may make a reservation for
network bandwidth needed tomorrow afternoon. First, the program needs
to make a list of the attributes needed for the reservation. GARA uses a
text-based attribute-value representation of a reservation. The representation
language we currently use—the Globus Resource Specification Language, or
RSL [CFK

�
98b]—is schema-free, but GARA has some standard attributes. A

typical reservation request may look like:

&(reservation-type=network)
(start-time=953158862)
(duration=3600)
(endpoint-a=140.221.48.146)
(endpoint-b=140.221.48.106)
(bandwidth=150)}

The first three fields (reservation-type, start-time, and duration) are used for
all reservations. The last three fields are unique to network reservations.

To request the reservation, the programmer does:

(error, handle) = reservation-create(resource-name, resv-desc);

Assuming there is no error, the reservation has been made. It can be queried at
any time to find out the status of the reservation:

(error, status) = reservation-status(handle);

There is also an asynchronous event delivery service that can inform a pro-
gram about reservation related events. These events are sent by the resource
manager. Example events are a notification that a reservation time has begun or
that an application is sending data faster than the reservation allows [FRS00].



382 GRID RESOURCE MANAGEMENT

When a program is ready to use a reservation, it sometimes needs to inform
GARA of the information that was not previously available. For example, a
network reservation needs to provide the port numbers used by the TCP or
UDP connection so that the network routers can provide QoS guarantees, but
these port numbers are not known in advance. Providing this information is
known as binding the reservation:

bind_params = "(endpoint-a-port=1234)"
+ "(endpoint-b-port=5678)";

error = reservation-bind(handle, bind_params);

When the program is done with a reservation, it can be canceled:

error = reservation-cancel(handle);

Note that the information passed within a bind request is always related to
the requested type of service. GARA uses RSL to provide a generic inter-
face. As much as possible, these parameters are kept consistent in GARA, but
they must change to reflect the underlying properties of the QoS. Beyond this
difference though, GARA present a uniform interface to the underlying QoS
providers.

2.1.3 Resource Managers: Service Provisioning for Grid Resources

A resource manager translates requests for QoS into actions that need to
be taken to ensure that the QoS is provided to the application. For instance, a
resource manager may configure a router to ensure that an application receives
the bandwidth that it requested.

GARA was designed to make it easy to integrate new resource managers
written by other people, but we also created several resource managers just for
use in GARA. For GARA, we created a network QoS resource manager that
uses differentiated services, a prototype disk space QoS resource manager, and
a CPU QoS resource manager that uses process priorities. We also created two
hybrid resource managers: one interacts with the Dynamic Soft Real-Time
(DSRT) CPU scheduler [CN99] and adds advance reservations, another inter-
acts with the Portable Batch System (PBS) which already provides advance
reservations. A collaborator created a resource manager for graphic pipelines.
Although we worked with a number of resource managers, most of our focus
was on the network resource manager.

To be used in GARA, resource managers need to have a few common fea-
tures:

Advance Reservations. Each resource manager must support advance
reservations. If a resource manager does not support advance reserva-
tions, support can be added by using a hybrid resource manager on top



GARA: A Uniform Quality of Service Architecture 383

of the resource manager, similar to the DSRT example mentioned above.
Within GARA, we developed a simple but effective slot table manager
to manage reservations that are considered as slots in time. Each slot
represents a single capacity delegation as a “slot” of time. These slot
tables can be used by any resource manager to keep track of reserva-
tions. In addition to the provision of basic slot table operations such as
creating, modifying, and deleting an entry, the manager can also deliver
asynchronous events when a reservation begins or ends. Therefore, it of-
fers an implementation framework for implementing advanced notifica-
tion services as described above and can be reused in different resource
managers.

Interaction with Resource. Each resource manager needs to interact with
the underlying resource in order to enforce the QoS. If the resource man-
ager does not have complete control over the QoS, then reservations can-
not be guaranteed.

External Interface. Services provided by resource managers need to be
accessed. Because GARA incorporates the interface of resource man-
agers into a Grid resource management framework, it depends on the
ability to interface directly with the resource manager. Note that GARA
was implemented within the Globus framework which provides user del-
egation. It therefore knows which user is accessing a resource manager,
and all interaction happens as that user.

Note that resource managers do not necessarily need to provide authenti-
cation or remote access, since that is provided through the higher levels in
GARA. However, because GARA understands users and uses delegation when
users authenticate, resource managers can do additional authentication.

3. CO-RESERVATIONS

Most QoS research has concentrated on single types of reservations, whether
network reservations [FV90], CPU reservations [LRM96], or disk reserva-
tions [MNO

�
96]. However, it is often important to use different reservations

at the same time. When multiple reservations are made at the same time, we
call them coordinated reservations, or co-reservations.

Consider, for example, the scientific visualization application shown in Fig-
ure 23.2. Here we have an application reading experimental results from disk,
rendering the results by creating lists of polygons, and sending the results to
a remote computer which then visualizes the results. If the entire system is
manually reserved to be used by the application alone, perhaps by a phone call
to a system administrator, then no QoS mechanism is necessary. However, if
we are using shared systems, any portion of the system could experience con-



384 GRID RESOURCE MANAGEMENT

tention, slowing down the scientific visualization. In particular we could have
contention for:

the disk system where the experimental results are stored,

the CPU doing the rendering,

the network used for sending the rendered data,

the CPU displaying the final results.

Server


Raw

Data


Rendering

Engine


Network


Client


Display


Figure 23.2. An application that could benefit from co-reservation. An example of an ap-
plication that could benefit from co-reservation. Because the reservation pipeline uses several
different potentially shared resources, it is likely to be beneficial for the application to make a
reservation for each resource: disk, graphic pipeline, computer, display, and network.

Any one or a combination of these systems could require the use of QoS.
We need to make reservations for each system to ensure that everything works
smoothly when we cannot predict what contention will occur in the future.

Figure 23.3 shows a concrete example of the usefulness of co-reservation.
In this example, an application is attempting to send data at 80 Mb/s using
TCP. Because the application is sending at a high rate, it may delay in sending
data if the CPU is busy. Because of TCP’s sliding window mechanism, this
may result is significantly lower bandwidth. In the experiment, the applica-
tion experienced two types of congestion. First, there was network congestion
beginning at about time 15 and continuing to the end of the experiment. A net-
work reservation was made at time 40 to request for an appropriate bandwidth.
Second, there was contention for the CPU at about time 60 and continuing for
the rest of the experiment. A CPU reservation was made at time 80 to correct
for this. From time 80 to 120, both reservations were active, and the application
was able to send data at its full rate. co-reservation.

Although the application shown in Figure 23.3 was an experiment and not
performed with a real application, it reinforces our point that it is often impor-
tant to combine different types of reservations.

Because GARA has a uniform interface to multiple types of underlying
reservation systems, it is fairly easy to build co-reservation agents that manage
the multiple reservations on behalf of a user. We have built such co-reservation
agents, and they are described in [Roy01].



GARA: A Uniform Quality of Service Architecture 385

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

K
b/

s)

Time (s)

Reserved TCP Traffic
Competitive UDP Traffic

Figure 23.3. Combining DSRT and differentiated services reservations.

4. NETWORK RESERVATIONS

In a Grid environment, networks are essential to the smooth operation of the
Grid, and they are also often the most shared resources. Therefore, when we
developed GARA we spent considerable effort in ensuring that GARA could
effectively manage advance reservations and QoS for applications that made
demanding use of networks.

Grid applications have a wide-variety of network QoS needs which are
much more challenging than other network QoS applications such as voice
over IP. This is because Grid applications use a wide variety of network flows,
including low-bandwidth but low-latency control flows, high-bandwidth and
low-latency data transfers for applications such as visualization, and high-
bandwidth but not necessarily low-latency data transfers for moving large
amounts of data for analysis and other purposes. This combination of types of
network flow places strong requirements on the network QoS layers. When we
examined the needs of various applications [FK99b] we saw the need to sup-
port two basic services: a premium service offering a low-delay virtual leased
line and a guaranteed rate service. Because of the wide variety and complexity
of network demands coupled with the requirement to incorporate the resource
“network” into our Grid resource management framework, GARA has a flex-
ible resource manager that addresses the particular requirements of emerging
Grid applications in IP-based networks.

Initially, our efforts focused on providing network QoS within a single net-
work domain, which considerably simplified the problem. Later, we investi-
gated providing network QoS between multiple network domains. All of these
efforts were implemented in GARA at the resource manager level.



386 GRID RESOURCE MANAGEMENT

4.1 Single Domain Network Reservations

We initially built a GARA resource manager that could provide reservations
within a single network domain. This facilitated a rapid prototyping, because
it is possible to give it access to all of the relevant network resources in order
enforce the QoS.

The first problem we considered was the mechanism to use to implement
the network QoS. QoS in an Internet Protocol (IP) network can be provided in
different ways. Over the years, two primary approaches have been used and
are exemplified by two standards published by the Internet Engineering Task
Force’s (IETF). One of these is Integrated Services [Wro97, BCS94] which
provides service guarantees based on a flow-based packet differentiation in
each router, and the other is Differentiated Services, or diffserv, which dif-
ferentiates only the treatment of classes of packets called aggregates instead
of individual reservations. Integrated Services has been largely abandoned in
favor of diffserv, and we do not discuss it further here.

The diffserv architecture [BBC
�

98] is a reaction to the scalability problems
of the flow-based approach of the Integrated Services architecture, and does
not provide reservations. Instead, packets are identified by simple markings in
the type of service field of the IP-header [NBBB98] that indicate how routers
should treat the packets. In the core of the network, routers need not to deter-
mine which flow a packet is part of, only which aggregate behavior they should
apply. In this scenario, one needs to decide which packets get marked–this is
how a higher-level service can provide reservations. To do this, a particular
resource manager called a bandwidth broker is used. A bandwidth broker is
a middleware service which controls and facilitates the dynamic access to net-
work services of a particular administrative domain. Our goal for GARA was
to design and implement a resource manager which fulfills the functions of a
bandwidth broker.

Diffserv allows packets to be marked either by applications or by the first
router that receives the packets—the edge router. If applications are allowed
to mark packets, QoS cannot be guaranteed, so GARA uses the edge routers
to mark packets. In order to enforce the reservation, packets are only marked
when they are “within profile”—that is, when the sender is sending within rate
given to the reservation.

Core routers (those that are not on the edge) have an easier job because they
do not need to identify packets that need marking, nor police packets to en-
sure they are within profile. Instead, core routers apply a particular packet
treatment—called per-hop behavior (PHB)—based only on these markings.
Currently, the Internet Engineering Task Force’s Differentiated Services Work-
ing Group has specified a small set of PHBs [DCB

�
01, HFB

�
99].



GARA: A Uniform Quality of Service Architecture 387

GARA uses the Expedited Forwarding (EF) PHB, which is intended to be
used for a high-priority service with little jitter and queuing delay. The exact
definition of EF is rather technical, so to simplify, each router interface can
be configured so that traffic marked for the EF aggregate is prioritized over all
other packets. To prevent starvation, we have to limit the amount of data which
is marked as EF. This admission control is the task of the GARA resource
manager. Details of how EF is required to work are defined in [CBB

�
02]. We

have found that when carefully used, EF can provide robust reservations.
In order to implement a premium service based on EF, GARA assumes that

each output link is configured to identify EF packets and to prioritize them
appropriately by applying priority queuing. Note that this potentially requires a
configuration update of all routers in a domain. Fortunately, this only has to be
done once. While the admission control procedure uses the slot table manager
to respond to reservation requests, reservations also have to be instantiated
and policed in the edge routers. GARA dynamically configures the packet
classifier, the policer, and the packet marker to appropriately map packets to
EF. Figure 23.4 illustrates this scenario. Packet classification is done based
on the reservation attributes specified when a user made a reservation. When
applied to the scenario we describe here, it is done based on the end-points
(address and port number) and the protocol (TCP or UDP).

Once the packets have been classified, a so-called “token bucket” is used to
ensure that during the time interval ? � À Q�� � A of length y <�� � |º� À the amount of
data sent does not exceed

� y A . bytes. Here,
�

denotes the average rate the at
which the token bucket operates and

.
represents the depth of the token bucket

which allows some limited bursts. Packets which fulfill this constraint will be
marked to belong to EF. To do this correctly, GARA identifies and configures
the relevant edge router every time a reservation is activated.

Note that applications may have a difficult time staying within the limits
of their reservations. While monitoring the policing function and providing
feedback to the application is appropriate for UDP-based flows, this mecha-
nism does not work well for TCP-based communication. In order to assist
applications, a third mechanism, called traffic shaping, is used for the traffic
entering the edge router. The idea is to shape the injected TCP-traffic that it
injects a smooth rate that conforms to the reservation to the core network. By
incorporating this with the relaxed configuration of the policing function, TCP-
applications can effectively paced to use their reserved bandwidth. Details of
work we have done with this can be found in [SF02].

In previous papers such as [SFRW00], we have described many experi-
ments that demonstrate the details of implementing such schemes successfully.
GARA follows a concept which we call the “easy-to-deploy” paradigm, that
is, GARA’s ability to provide network services to Grid applications does not
rely on complex nor unrealistic assumptions. Based on the deployment of a



388 GRID RESOURCE MANAGEMENT

Source

Application


Destination

Application


GARA


Edge Router


Priority

Queuing


Core Router


Priority

Queuing


Classify

per-aggregate


Configure
 Data


Classify

per-flow


Enforce & Mark

(token bucket)


Figure 23.4. A simple network that shows how GARA uses diffserv. GARA configures edge
routers to use classification, marking, and enforcement per-flow, and priority queuing is used in
the core.

single prioritized PHB, GARA is able to provide a premium and a guaranteed
rate service. Furthermore, we do not rely on changes of the transport protocol,
nor specific advanced capabilities of the operating system, such as the support
of traffic shaping. A comprehensive discussion can be found in [San03].

4.2 Multi-Domain Network Reservations

As mentioned above, the GARA network resource manager that implements
network QoS is an example of what is commonly known as a bandwidth bro-
ker. Because of the fact that end-to-end guarantees in Grid environments are
likely to happen in complex network environments where multiple indepen-
dent administrative organizations are responsible for the operation of subparts
of the network, it is very unlikely that a single bandwidth broker will control
more than one administrative domain. Instead, each administrative domain
wishes to have control over their resources and will thus operate its own policy
decision point.

Therefore, bandwidth brokers must interact with other bandwidth brokers.
A network reservation for traffic traversing multiple domains must obtain mul-



GARA: A Uniform Quality of Service Architecture 389

tiple network reservations, as shown in Figure 23.5. Here, Alice wants to make
a network reservation from her computer in source domain A to Charlie’s com-
puter in destination domain C. Somehow she needs to contact and negotiate a
reservation with

�j� ´ and
�ó�IH

as well as the intermediate domain,
�j�KJ

.
We have experimented with two approaches to multi-domain reservations: co-
reservation and chained bandwidth brokers.

BB-B
 BB-C
BB-A


Charlie
Alice


Domain A
 Domain B
 Domain C


Figure 23.5. The multi-domain reservation problem. Alice needs to contact three
bandwidth brokers (BB-A, BB-B, BB-C) to make a network reservation from her
computer in domain A to Charlie’s computer in domain C.

4.2.1 Using Co-Reservation

Alice, or an agent working on her behalf, can contact each bandwidth bro-
ker individually A positive response from every bandwidth broker indicates
that Alice has an end-to-end reservation. However, there are two serious flaws
with this methodology. First, it is difficult to scale since each bandwidth broker
must know about (and be able to authenticate) Alice in order to perform autho-
rization. Furthermore, if another user, Bob, makes an incomplete reservation,
either maliciously or accidentally, he can interfere with Alice’s reservation. An
example of this type of bad reservation is illustrated in Figure 23.6.

The authorization problem could be solved if Alice could acquire some com-
mon credential issued by a community wide authorization server. GARA could
interoperate with the Community Authorization Server (CAS) [PWF

�
02] of

the Globus project to achieve this. However, the problem of incomplete reser-
vations discouraged us from pursuing network co-reservations further.

4.2.2 Using Chained Bandwidth Brokers

The problems just noted are a motivation for the specification of an alterna-
tive approach, in which reservation requests are propagated between bandwidth
brokers rather than all originating at the end domain. As shown in Figure 23.7,
this means that Alice only contacts

�ó� ´ , which then propagates the reserva-
tion request to

�j� J
only if the reservation was accepted by

�j� ´ . Similarly,



390 GRID RESOURCE MANAGEMENT

BB-B
 BB-C
BB-A


Charlie
Alice


Domain A
 Domain B
 Domain C


BB-D


David


Domain D


Figure 23.6. Consistency problem of source-domain-based signaling. David, a mali-
cious user in domain D, makes a reservation in domains D and B, but fails to make a
reservation in domain C, even though he will be sending his marked packets to Charlie
in domain C. Domain C polices traffic based on traffic aggregates, not on individual
users, so it cannot tell the difference between David’s traffic and Alice’s reserved traf-
fic. Therefore, there will be more reserved traffic entering domain C than domain
C expects, causing it to discard or downgrade the extra traffic and thereby affecting
Alice’s reservation.

�j� J
contacts

�j� H
. With this solution, each bandwidth broker only needs to

know about its neighboring bandwidth brokers, and all bandwidth brokers are
always contacted. In addition to this chained signaling approach, Figure 23.7
also demonstrates the use of the GARA API (see Section 2.1.2) to couple a
multi-domain network reservation with a CPU reservation in domain C.

With this chained signaling approach, the bandwidth broker interfaces not
only with the high-level GARA interface for application, but also with its peer
bandwidth brokers. The Internet2 community [ABC

�
01] has proposed us-

ing a long term TCP connection to establish a stateful communication between
peered bandwidth brokers. However, a reservation actuator accompanies reser-
vations during their lifetime. Therefore, there is no need for a long term con-
nection for individual requests. The abstraction of a traffic trunk is the res-
olution for these heterogeneous demands. While a traffic trunk represents a
single reservation for end-domains, it represents the pieces of interest for tran-
sient domains: core tunnels. A core tunnel is an aggregated uni-directional
reservation between the two end-domains. It connects the egress router of the
source-domain with the ingress router of the destination-domain by means of
the service request parameters. By introducing a traffic trunk for each core
tunnel, a reservation actuator accompanies a core tunnel during its lifetime. It
subscribes to events signaled by the peered domains and in doing so, it enforces



GARA: A Uniform Quality of Service Architecture 391

a TCP connection for all entities which have registered a callback which life-
time is related to the lifetime of the core tunnel. For static Service Level Agree-
ments (SLAs), the proposed model conforms to the SIBBS model, because a
static SLA is represented by a set of long term core tunnels. A comprehensive
discussion on this approach can be found in [SAFR01, San03].

BB-B
 BB-C
BB-A


Charlie

CPU
Alice


Domain A
 Domain B
 Domain C


Co-Reservation

API


Network

CPU


Figure 23.7. Multi-domain reservations with hop-by-hop-based signaling. Hop-by-
hop-based signaling of QoS requests is done using an authenticated channel between
peered bandwidth brokers along the downstream path to the destination.

4.2.3 Building Per-Domain Behaviors

The purpose of specifying PHBs for aggregates is to establish services. Be-
cause diffserv is used in domains in which the specific PHBs are applied, ser-
vices are established by domains and are provided within domain boundaries.
[NC01] defined this more precisely as a Per-Domain Behavior (PDB). It de-
scribes the expected treatment that an identifiable or target group of packets
will receive from “edge-to-edge” of a diffserv domain. The creation of a core
tunnel in transient domains can thus be interpreted as an agreement to serve
the related aggregate with a particular service level, or PDB.

Earlier, we described GARA’s slot table manager for performing its admis-
sion control task. Initially, we used it in a simplistic way, and used a single
slot table for a whole domain. This solution limited the offered service to the
achievable service of the link with the minimum QoS capability of the domain,
that is, we assumed that all requests will flow through this particular link.

Later, we used a more advanced admission control procedure using the
knowledge about the network topology and about the routing tables, which
is able to identify the actual path of the request in the controlled domain. In
this case, the service was not limited by the minimum link capability anymore.
However, also this approach does have its limitations. In the fuzzy context
of aggregate based scheduling it is hard to provision strict delay and jitter
boundaries [CB00]. We therefore respected the ability to incorporate traffic
engineering capabilities into the admission control procedure of GARA. In ex-



392 GRID RESOURCE MANAGEMENT

tending the interaction with the edge router by also controlling the use of the
traffic engineering capabilities of the MultiProtocol Label Switching (MPLS)
architecture [RVC01, RTF

�
01], GARA offers a flexible framework for service

provisioning in transient domain. Applying network calculus [BT00, Bou96],
a formal method for the worst-case analysis of the achievable network service,
gives the opportunity to use this feature for the establishment of strong service
guarantees [San03, Fid03].

5. AN IMPLEMENTATION FOR THE GLOBUS
TOOLKIT

The current implementation of GARA uses the Globus Toolkit as a foun-
dation. It was initially implemented as part of Globus 1.1.3, although a port to
Globus 2.0 has been done by a third party.

The four layers of the GARA architecture shown in Figure 23.1 map closely
to the layers of the Globus Toolkit. The GARA API, which resides in the
remote access layer, corresponds closely with the Globus Resource Alloca-
tion Manager (GRAM) API [CFK

�
98b], which uses the Grid Security Infras-

tructure (GSI) for authentication (see Chapter 5). The Globus gatekeeper is
responsible for authenticating and authorizing all GRAM and GARA interac-
tions with a system. The LRAM layer and the local resource managers do not
have exact analogues in the Globus Toolkit, but were implemented completely
within the GARA framework.

Because the protocol for communication with the gatekepeer and the secu-
rity mechanisms were already completely existing within the Globus Toolkit,
we were able to easily leverage them without any loss of generality or flexibil-
ity in the overall architecture of GARA.

5.1 Security

Globus uses the Grid Security Infrastructure (GSI) [FKTT98]. The GSI nor-
mally uses public key cryptography. Users have private keys that they never
share, and public keys (called certificates) that anyone can view. An important
aspect of GSI is that it allows users to delegate credentials. To do this, a user
can create a proxy certificate which has a new public and private key and is
signed by the user’s private key. However, it usually has a much shorter life
time, generally on the order of twelve to twenty-four hours. This proxy cer-
tificate can then be used for authentication. If the proxy should happen to be
compromised, it will useful for a much shorter time than the user’s private key.



GARA: A Uniform Quality of Service Architecture 393

5.2 The Gatekeeper Protocol

GARA uses GSI to authenticate with the gatekeeper. After authentica-
tion, the gatekeeper passes the network connection to another program called
the GARA service. This GARA service uses the Local Resource Manager
(LRAM) API to interact with the local resource managers. Each GARA API
call is a transaction with the gatekeeper, so each call benefits from the security
and remote access capability.

The GARA API allows users to request callbacks that inform the user when
changes to the reservation occur. These do not use the gatekeeper for callbacks,
but retain the connection originally opened to the gatekeeper, but redirected to
another program that provides the callbacks.

5.3 Mapping of Service Requests to Resource Managers

As mentioned above, the GARA service uses the LRAM API. This is sim-
ilar to the GARA API, but it does not provide remote access or security. It
does provide an abstract interface to the resource managers so that the GARA
service does not require intimate knowledge of different resource managers.
Instead, the LRAM API knows the details of speaking to the resource man-
agers.

The LRAM is implemented as a series of libraries that can be used to com-
municate with different resource managers. While it was written in C, it is
essentially an object-oriented framework that allows for abstract interfaces to
a variety of implementations.

6. FUTURE WORK

Although GARA has been demonstrated to be an effective system [SFRW00,
FRS00, San03, Roy01], it is a first-generation architecture, and there are im-
portant improvements we are planning for GARA.

To improve GARA’s functionality in Grid environments, we will extend its
uniform API, particularly to include a two-phase commit protocol, which is
essential for reliability. We also intend to move GARA to the Open Grid Ser-
vices Architecture (OGSA) [FKNT02, TCF

�
03]. For a detailed discussion

about this convergence refer to [CFK
�

02].
GARA needs a better mechanism for helping users find reservations. Cur-

rently GARA publishes information about what reservations may be available
in an information service, and it is up to the user to ask for a reservation that
may work. GARA can only respond with “yes” or “no” when a request is
made. A more effective approach is the sort used by ClassAd matchmaking
[RLS98]. Such a system would allow users to say, “I need 10-15 megabits per
second for an hour tomorrow afternoon”.



394 GRID RESOURCE MANAGEMENT

Enhancing GARA’s resource managers is driven by user demand. The im-
provement of the network resource manager is still an ongoing effort. The Path
Allocation in Backbone networks (PAB) project [SIF03] funded by the German
Research Network (DFN) and the Federal Ministry of Education and Research
(BMBF) is developing an optimized admission control procedure. The em-
bedded advanced traffic engineering capabilities can be optimized based on an
emerging simulation tool. We intend to integrate the results within GARA’s
admission control procedures.

Extending GARA’s reach to other types of QoS, particularly disk space
reservations would be very useful. Our prototype disk space resource manager
was sufficient to show that it was interesting, and we believe that interacting
with a system such as NeST (see Chapter 21) would work well.

7. CONCLUSIONS

GARA is an architecture that provides a uniform interface to varying types
of QoS, and allows users to make advance reservations. In our experience,
GARA has provided a useful framework in which to experiment with differ-
ent types of QoS. In particular, we have experimented heavily with network
QoS, but have also investigated providing reservations for computers, CPU
time, disk space, and graphic pipelines. We believe that GARA is a promising
platform for future investigations into quality of service.

For those interested in further discussion of this topic, please see Chapter 8
and [Roy01, San03].


