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We describe NeST, a flexible software-only storage appliance designed to meet
the storage needs of the Grid. NeST has three key features that make it well-
suited for deployment in a Grid environment. First, NeST provides a generic
data transfer architecture that supports multiple data transfer protocols (includ-
ing GridFTP and NFS), and allows for the easy addition of new protocols. Sec-
ond, NeST is dynamic, adapting itself on-the-fly so that it runs effectively on
a wide range of hardware and software platforms. Third, NeST is Grid-aware,
implying that features that are necessary for integration into the Grid, such as
storage space guarantees, mechanisms for resource and data discovery, user au-
thentication, and quality of service, are a part of the NeST infrastructure. We
include a practical discussion about building grid tools using the NeST software.

Storage, storage management, storage appliances, reservations, quality of ser-
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1. INTRODUCTION

Data storage and movement are of increasing importance to the Grid. Over
time, scientific applications have evolved to process larger volumes of data, and
thus their overall throughput is inextricably tied to the timely delivery of data.
As the usage of the Grid evolves to include commercial applications (Lohr,
2002), data management will likely become even more central than it is today.

Data management has many aspects. While performance has long been the
focus of storage systems research, recent trends indicate that other factors, in-
cluding reliability, availability, and manageability, may now be more relevant.
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In particular, many would argue that manageability has become the dominant
criterion in evaluating storage solutions, as the cost of storage management
outweighs the cost of the storage devices themselves by a factor of three to
eight (Patterson, 2002).

One potential solution to the storage management problem is the use of
specialized storage devices known as appliances. Pioneering products such
as the filers of Network Appliance (Hitz et al., 1994) reduce the burden of
management through specialization; specifically, their storage appliances are
designed solely to serve files to clients, just as a toaster is designed solely to
toast. The results are convincing: in field testing, Network Appliance filers
have been shown to be easier to manage than traditional systems, reducing
both operator error and increasing system uptime considerably (Lancaster and
Rowe, 2001).

Thus, storage appliances seem to be a natural match for the storage needs of
the Grid, since they are easy to manage and provide high performance. How-
ever, there are a number of obstacles that prevent direct application of these
commercial filers to the Grid environment. First, commercial storage appli-
ances are inflexible in the protocols they support, usually defaulting to those
common in local area Unix and Windows environments (e.g., NFS (Walsh
etal., 1985) and CIFS (Sharpe, 1999)). Therefore, filers do not readily mix into
a world-wide shared distributed computing infrastructure, where non-standard
or specialized Grid protocols may be used for data transfer. Second, commer-
cial filers are expensive, increasing the cost over the raw cost of the disks by
a factor of ten or greater. Third, storage appliances may be missing features
that are crucial for integration into the Grid environment, such as the ability to
interact with larger-scale global scheduling and resource management tools.

To overcome these problems and bring appliance technology to the Grid,
we introduce NeST, an open-source, user-level, software-only storage appli-
ance. As compared to current commercial storage appliances, NeST has three
primary advantages: flexibility, cost, and Grid-aware functionality. We briefly
discuss each of these advantages in more detail.

First, NeST is more flexible than commercial storage appliances. NeST
provides a generic data transfer architecture that concurrently supports mul-
tiple data transfer protocols (including GridFTP (Allcock et al., 2002) and
NFS). The NeST framework also allows new protocols to be added as the Grid
evolves.

Second, because NeST is an open-source software-only appliance, it pro-
vides a low-cost alternative to commercial storage appliances; the only ex-
penses incurred are the raw hardware costs for a PC with a few disks. How-
ever, because NeST is a software-based appliance, it introduces new problems
that traditional appliances do not encounter: NeST must often run on hardware
that it was not tailored for or tested upon. Therefore, NeST contains the ability
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Figure 1.1.  NeST Software Design. The diagram depicts NeST and its four major compo-
nents: the protocol layer, the storage manager, the transfer manager, and the dispatcher. Both
control and data flow paths are depicted.

to adapt to the characteristics of the underlying hardware and operating sys-
tem, allowing NeST to deliver high performance while retaining the ease of
management benefits of storage appliances.

Finally, NeST is Grid-aware. Key features, such as storage space guar-
antees, mechanisms for resource and data discovery, user authentication, and
quality of service, are a fundamental part of the NeST infrastructure. This func-
tionality enables NeST to be integrated smoothly into higher-level job sched-
ulers and distributed computing systems (?; ?; ?; ?2; ?; ?).

The rest of this chapter is organized as follows. Section 2 describes the
overall design of NeST. The protocol layer which mediates interaction with
clients is described in Section 3. Section 4 describes the transfer manager
which is responsible for monitoring and scheduling concurrency and quality
of service, and Section 5 describes the storage layer which manages the actual
physical storage of the system. An example usage of NeST is traced within
Section 6, Section 7 describes the user interface, comparisons to related work
are in Section 8, and conclusions are drawn in Section 9.

2. DESIGN OVERVIEW

As a Grid storage appliance, NeST provides mechanisms both for file and
directory operations as well as for resource management. The implementa-
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tion to provide these mechanisms is heavily dependent upon NeST’s modular
design, shown in Figure 1.1. The four major components of NeST are its pro-
tocol layer, storage manager, transfer manager and dispatcher. We first briefly
examine each of these components separately; then we show how they work
together by tracing an example client interaction.

2.1 Component Descriptions

The protocol layer in NeST provides connectivity to the network and all
client interactions are mediated through it. Clients are able to communicate
with NeST with any of the supported file transfer protocols, including
HTTP (Fielding et al., 1997), NFS (Sandberg, 1985), FTP (Postel, 1980),
GridFTP (Allcock et al., 2002), and Chirp, the native protocol of NeST. The
role of the protocol layer is to transform the specific protocol used by the client
to and from a common request interface understood by the other components
in NeST. We refer to this as a virtual protocol connection and describe it and
the motivation for multiple protocol support in Section 3.

The dispatcher is the main scheduler and macro-request router in the sys-
tem and is responsible for controlling the flow of information between the other
components. It examines each client request received by the protocol layer and
routes each appropriately to either the storage or the transfer manager. Data
movement requests are sent to the transfer manager; all other requests such as
resource management and directory operation requests are handled by the stor-
age manager. The dispatcher also periodically consolidates information about
resource and data availability in the NeST and can publish this information as
a ClassAd (?) into a global scheduling system (Thain et al., 2001b).

The storage manager has four main responsibilities: virtualizing and con-
trolling the physical storage of the machine (e.g., the underlying local filesys-
tem, raw disk, physical memory, or another storage system), directly executing
non-transfer requests, implementing and enforcing access control, and manag-
ing guaranteed storage space in the form of lots. Lots are discussed in more
detail below.

Because these storage operations execute quickly (in the order of millisec-
onds), we have chosen to simplify the design of the storage manager and have
these requests execute synchronously. It is the responsibility of the dispatcher
to ensure that storage requests are serialized and executed at the storage man-
ager in a thread-safe schedule.

The transfer manager controls data flow within NeST; specifically, it trans-
fers data between different protocol connections (allowing transparent three-
and four-party transfers). All file data transfer operations are managed asyn-
chronously by the transfer manager after they have been synchronously ap-
proved by the storage manager. The transfer manager contains three different
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concurrency models, threads, processes and events, and schedules each transfer
using one of these models. Scheduling policies, such as preferential schedul-
ing, and scheduling optimizations are the responsibility of the transfer manager
and are discussed in Section 4.

2.2 An Example Client Interaction

We now examine how these four components function together by tracing
the sequence of events when interacting with a client. In this example, we
consider the case when a client first creates a new directory (i.e., a non-transfer
request) and then inserts a file into that directory (i.e., a transfer request).

When the client initially connects to NeST with the request to create the
directory, the dispatcher wakes and asks the protocol layer to receive the con-
nection. Depending upon the connecting port, the protocol layer invokes the
handler for the appropriate protocol. The handler then authenticates the client,
parses the incoming request into the common request format, and returns a
virtual protocol connection to the dispatcher.

The dispatcher then asks the storage manager to create the directory. After
checking for access permissions, the storage manager synchronously creates
the directory and sends acknowledgment back to the client through the dis-
patcher and the virtual protocol connection.

At this point, the dispatcher assumes responsibility for the client and listens
for further requests on its channel. After the client sees that the directory is
created successfully, it requests permission to send a file. The dispatcher in-
vokes its virtual protocol connection to receive this request and again queries
the storage manager. The storage manager allows the transfer and returns a vir-
tual protocol connection into which the transfer can be written. The dispatcher
passes both connections to the transfer manager, stops listening on the client
channel, and sleeps, waiting for the next client request.

The transfer manager is then free to either schedule or queue the request;
once the request is scheduled, the transfer manager uses past information to
predict which concurrency model will provide the best service and passes the
connection to the selected model. The transfer continues as the chosen con-
currency model transfers data from the client connection to the storage con-
nection, performing an acknowledgment to the client if desired. Finally, the
transfer status is returned to the transfer manager and then up to the dispatcher.

In the following sections, we describe the most important aspects of NeST.
First, we motivate the importance of supporting multiple communication pro-
tocols within a virtual protocol layer. Second, we describe how the transfer
manager adapts to the client workload and underlying system to pick the con-
currency model with the best performance. Third, we show how the transfer
manager can apply scheduling policies among different connections. Fourth,
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we explain the role of storage guarantees in NeST, and explain how the storage
manager implements this functionality.

3. PROTOCOL LAYER

Supporting multiple protocols is a fundamental requirement of storage ap-
pliances used in the Grid. Though there has been some standardization toward
a few common protocols within the Global Grid Forum (gri, ), diversity is
likely to reign in a community as widespread and fast-moving as the Grid. For
example, even if all wide-area transfers are conducted via GridFTP, local-area
file access will still likely be dominated by NFS, AFS, and CIFS protocols.

Multiple protocols are supported in NeST with a virtual protocol layer. The
design and implementation of our virtual protocol layer not only allows clients
to communicate with NeST using their preferred file transfer protocol, but also
shields the other components of NeST from the detail of each protocol, al-
lowing the bulk of NeST code to be shared among many protocols. Thus, the
virtual protocol layer in NeST is much like the the virtual file system (VFS)
layer in many operating systems (Kleiman, 1986).

An alternative approach to having a single NeST server with a virtual pro-
tocol layer is to implement separate servers that understand each individual
protocol and run them simultaneously; we refer to this latter approach as “Just
a Bunch Of Servers” or “JBOS”. The relative advantage of JBOS is that servers
can be added or upgraded easily and immediately once any implementation of
that protocol is available; with NeST, incorporating a new or upgraded proto-
col may take more effort, as the protocol operations must be mapped onto the
NeST common framework.

However, we believe the advantages of a single server outweigh this im-
plementation penalty for a number of reasons. First, a single server enables
complete control over the underlying system; for example, the server can give
preferential service to requests from different protocols or even to different
users across protocols. Second, with a single interface, the tasks of admin-
istering and configuring the NeST are simplified, in line with the storage ap-
pliance philosophy. Third, with a single server, optimizations in one part of
the system (e.g., the transfer manager or concurrency model) are applied to all
protocols. Fourth, with a single server, the memory footprint may be consid-
erably smaller. Finally, the implementation penalty may be reduced when the
protocol implementation within NeST can leverage existing implementations;
for example, to implement GridFTP, we use the server-side libraries provided
in the Globus Toolkit and we use the Sun RPC package to implement the RPC
communication in NFS.

At this point, we have implemented five different file transfer protocols in
NeST: HTTP, NFS, FTP, GridFTP, and the NeST native protocol, Chirp. In
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our experience, most request types across protocols are very similar (e.g., all
have directory operations such as create, remove, and read, as well as file
operations such as read, write, get, put, remove, and query) and fit easily
into our virtual protocol abstraction. However, there are interesting exceptions;
for instance, Chirp is the only protocol that supports lot management (lots will
be discussed further in Section 5) and NFS is the only protocol with a lookup
and mount request. Note that mount, not technically part of NFS, is actually a
protocol in its own right; however, within NeST, mount is handled by the NFS
handler.

We plan to include other Grid-relevant protocols in NeST, including data
movement protocols such as IBP (Plank et al., 2001) and resource reservation
protocols, such as those being developed as part of the Global Grid Forum (gri,
). We expect that as new protocols are added, most implementation effort will
be focused on mapping the specifics of the protocol to the common request
object format, but that some protocols may require additions to the common
internal interface.

Since the authentication mechanism is protocol specific, each protocol han-
dler performs its own authentication of clients. The drawback of this approach
is that a devious protocol handler can falsify whether a client was authenti-
cated. Currently, we allow only Grid Security Infrastructure (GSI) authenti-
cation (Foster et al., 1998), which is used by Chirp and GridFTP; connections
through the other protocols are allowed only anonymous access.

4. TRANSFER MANAGER

At the heart of data flow within NeST is the transfer manager. The trans-
fer manager is responsible for moving data between disk and network for a
given request. The transfer manager is protocol agnostic: thus, all of the ma-
chinery developed within the manager is generic and moves data for all of the
protocols, highlighting one of the advantages of the NeST design.

4.1 Multiple Concurrency Models

Inclusion in a Grid environment mandates the support for multiple on-going
requests. Thus, NeST must provide a means for supporting concurrent trans-
fers. Unfortunately, there is no single standard for concurrency across operat-
ing systems: on some platforms, the best choice is to use threads, on others,
processes, and in other cases, events. Making the decision more difficult is the
fact that the choice may vary depending on workload, as requests that hit in the
cache may perform best with events, and those that that are 1/0 bound perform
best with threads or processes (Pai et al., 1999).

To avoid leaving such a decision to an administrator, and to avoid choosing a
single alternative that may perform poorly under certain workloads, NeST im-
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plements a flexible concurrency architecture. NeST currently supports three
models of concurrency (threads, processes, and events), but in the future we
plan to investigate more advanced concurrency architectures (e.g., SEDA (Welsh
et al., 2001) and Crovella’s experimental server (Crovella et al., 1999)). To de-
liver high performance, NeST dynamically chooses among these architectures;
the choice is enabled by distributing requests among the architectures equally
at first, monitoring their progress, and then slowly biasing requests toward the
most effective choice.

4.2 Scheduling

Because there are likely to be multiple outstanding requests within a NeST,
NeST is able to selectively reorder requests to implement different scheduling
policies. When scheduling multiple concurrent transfers, a server must decide
how much of its available resources to dedicate to each request. The most ba-
sic strategy is to service requests in a first-come, first-served (FCFS) manner,
which NeST can be configured to employ. However, because the transfer man-
ager has control over all on-going requests, many other scheduling policies are
possible. Currently, NeST supports both proportional share and cache-aware
scheduling in addition to FCFS.

421 Quiality of service

Proportional-share scheduling (Waldspurger and Weihl, 1995) is a determin-
istic algorithm that allows fine-grained proportional resource allocation and
has been used previously for CPU scheduling and in network routers (Kohler
et al., 2000). Within the current implementation of NeST, it is used to allow
the administrator to specify proportional preferences per protocol class (e.g.,
NFS requests should be given twice as much bandwidth as GridFTP requests);
in the future, we plan to extend this to provide preferences on a per-user basis.

Using byte-based strides, this scheduling policy accounts for the fact that
different requests transfer different amounts of data. For example, an NFS
client who reads a large file in its entirety issues multiple requests while an
HTTP client reading the same file issues only one. Therefore, to give equal
bandwidth to NFS requests and HTTP requests, the transfer manager sched-
ules NFS requests NV times more frequently, where N is the ratio between the
average file size and the NFS block size.

NeST proportional share scheduling is similar to the Bandwidth and Re-
quest Throttling module (Howe, 2000) available for Apache. However, propor-
tional share scheduling in NeST offers more flexibility because it can schedule
across multiple protocols, whereas Apache request-throttling only applies to
the HTTP requests the Apache server processes, and thus cannot be applied to
other traffic streams in a JBOS environment.
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Figure 1.2. Proportional Protocol Scheduling. This graph measures the fairness and over-
head of quality of service scheduling in a NeST running a synthetic workload. Within each set
of bars, the first bar represents the total delivered bandwidth across all protocols; the remaining
bars show the bandwidth per protocol. The labels for the sets of bars show the specified pro-
portional ratios; the desired lines show what the ideal proportions would be. Note that NeST is
able to achieve very close to the desired ratios in each case except the right-most.

The overhead and achieved fairness of proportional share scheduling in
NeST is shown in Figure 1.2. The first set of bars shows our base case in
which the NeST transfer manager uses the simple FIFO scheduler. The other
sets of bars adjust the desired ratio of bandwidth for each protocol.

We can make two conclusions from this graph. First, the proportional share
scheduler imposes a slight performance penalty over FIFO scheduling, deliv-
ering a total of approximately 24-28 MB/s instead of 33 MB/s. Second, the
proportional-share scheduler achieves very close to the desired ratios in almost
all cases. Specifically, using Jain’s metric (Chiu and Jain, 1989) of fairness in
which a value of 1 represents an ideal allocation, we achieve values of greater
than 0.98 for the 1:1:1:1, the 1:2:1:1, and the 3:1:2:1 ratios.

The only exception is that allocating additional bandwidth to NFS (e.g.,
1:1:1:4 for Chirp:GridFTP:HTTP:NFS) is extremely difficult; the Jain’s fair-
ness value in this case drops to 0.87. The challenge is that due to the smaller
block size used by NFS there are not a sufficient number of NFS requests for
the transfer manager to schedule them at the appropriate interval; in the case
where there is no available NFS request, our current implementation is work-
conserving and schedules a competing request, rather than allow the server to
be idle. We are currently implementing a non-work-conserving policy in which
the idle server waits some period of time before scheduling a competitor (lyer
and Druschel, 2001); such a policy might pay a slight penalty in average re-
sponse time for improved allocation control.
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4.2.2 Cache-awar e scheduling

Cache-aware scheduling is utilized in NeST to improve both average client
perceived response time as well as server throughput. By modeling the kernel
buffer cache using gray-box techniques (Arpaci-Dusseau and Arpaci-Dusseau,
2001), NeST is able to predict which requested files are likely to be cache
resident and can schedule them before requests for files which will need to be
fetched from secondary storage. In addition to improving client response time
by approximating shortest-job first scheduling, this scheduling policy improves
server throughput by reducing the contention for secondary storage.

In earlier work (Burnett et al., 2002), we examined cache-aware scheduling
with a focus toward web workloads; however, given the independence between
the transfer manager and the virtual protocol layer, it is clear that this policy
works across all protocols. This illustrates a major advantage that NeST has
over JBOS in that optimizations in the transfer code are immediately realized
across all protocols and need not be reimplemented in multiple servers.

5. STORAGE MANAGER

Much as the protocol layer allows multiple different types of network con-
nections to be channeled into a single flow, the storage manager has been de-
signed to virtualize different types of physical storage and to provide enhanced
functionality to properly integrate into a Grid environment. The three spe-
cific roles fulfilled by the storage manager are to implement access control,
virtualize the storage namespace, and to provide mechanisms for guaranteeing
storage space.

Access control is provided within NeST via a generic framework built on
top of collections of ClassAds (?). AFS-style access control lists determine
read, write, modify, insert, and other privileges, and the typical notions of
users and groups are maintained. NeST support for access control is generic,
as these policies are enforced across any and all protocols that NeST supports;
clients need only be able to communicate via the native Chirp protocol (or any
supported protocol with access control semantics) to set them.

NeST also virtualizes the physical namespace of underlying storage, thus
enabling NeST to run upon a wide variety of storage elements. However, in
our current implementation, we currently use only the local filesystem as the
underlying storage layer for NeST; we plan to consider other physical storage
layers, such as raw disk, in the near future.

When running in a remote location in the Grid, higher-level scheduling sys-
tems, individual users and Grid middleware, such as SRM (?), all must be
assured that there exists sufficient storage space to save the data produced by
their computation, or to stage input data for subsequent access. To address this
problem, NeST provides an interface to guarantee storage space, called a lot,
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and allows requests to be made for space allocations (similar to reservations
for network bandwidth (Zhang et al., 1993)).

Each lot is defined by four characteristics: owner, capacity, duration, and
files. The owner is the client entity allowed to use that lot; only individual
owners are currently allowed but group lots will be included in the next release.
The capacity indicates the total amount of data that can be stored in the lot.
The duration indicates the amount of time for which this lot is guaranteed to
exist. Finally, each lot contains a set of files; the number of files in a lot is not
bounded and a file may span multiple lots if it cannot fit within a single one.

When the duration of a lot expires, the files contained in that lot are not
immediately deleted. Rather, they are allowed to remain indefinitely until their
space needs to be reclaimed to allow the creation of another new lot. We
refer to this behavior as best-effort lots and are currently investigating different
selection policies for reclaiming this space.

To create files on a NeST, a user must first have access to a lot; however,
most file transfer protocols do not contain support for creating lots. In our
environment, a lot can be obtained in two different ways. First, when system
administrators grant access to a NeST, they can simultaneously make a set of
default lots for users. Second, a client can directly use the Chirp protocol to
create a lot before accessing the server with an alternative data-transfer proto-
col. Section 7 demonstrates via example how to use the Chirp protocol for lot
managament.

To provide maximize flexibility and user-customization, NeST currently
supports two different implementations of lots: kernel enforced and solely
NeST-managed. Kernel enforced lots rely on the quota mechanism of the un-
derlying filesystem, which allows NeST to limit the total amount of disk space
allocated to each user. Utilizing the quota system affords a number of benefits:
direct access to the file system (perhaps not through NeST) must also observe
the quota restrictions, thus allowing clients to utilize NeST to make the space
guarantee and then to bypass NeST and transfer data directly into a local file
system. However, one limitation in this approach is that all of a user’s lots must
be consolidated into a single quota limit. This consolidation makes it therefore
possible for a user to overfill one of her lots and then be unable to fill another
of her lots to capacity. Another limitation of the kernel enforced lots is that the
NeST must be run as super-user. The NeST-managed lot implementation does
not suffer from these limitations but it does require that all access to a NeST
machine be through one of the supported protocols. We leave it to the individ-
ual administrator to select which implementation is more appropriate for their
users.
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Figure 1.3.  NeST in the Grid. The diagram illustrates information flow in a scenario in
which multiple NeST servers are utilized in the Grid.

6. NeST IN THE GRID

With a basic understanding of NeST in place, we now illustrate how multiple
NeST servers might be used in a global Grid environment. Figure 1.3 depicts
such a scenario; all major events are labeled with the sequence numbers as
defined in the following description.

In the figure, a user has their input data permanently stored at their home
site, in this case at a NeST in Madison, Wisconsin. In step 1, the user submits
a number of jobs for remote execution to a global execution manager. This
manager is aware that a remote cluster, labeled the Argonne cluster, has a large
number of cycles available. The NeST “gateway” appliance in the Argonne
cluster has previously published both its resource and data availability into a
global Grid discovery system (Thain et al., 2001b). The manager is therefore
also aware that the Argonne NeST has a sufficient amount of available storage.

The manager decides to run the user’s jobs at the Argonne site, but only after
staging the user’s input data there. Thus, in step 2, the manager uses Chirp to
create a lot for the user’s files at Argonne, thus guaranteeing sufficient space
for input and output files. For step 3, the manager orchestrates a GridFTP third-
party transfer between the Madison NeST and the NeST at the Argonne cluster.
Other data movement protocols such as Kangaroo could also be utilized to
move data from site to site (Thain et al., 2001a).

In step 4, the manager begins the execution of the jobs at Argonne, and those
jobs access the user’s input files on the NeST via a local file system protocol,
in this case NFS. As the jobs execute, any output files they generate are also
stored upon the NeST. Note that the ability to give preference to some users or
protocols could be harnessed here, either by local administrators who wish to
ensure preference for their jobs, or by the global manager to ensure timely data
movement.
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Finally, for step 5, the jobs begin to complete, at which point the manager
moves the output data back to Madison, again utilizing GridFTP for the wide
area movement. The manager is then free to use Chirp to terminate the lot in
step 6, and inform the user that the output files are now available on the local
NeST.

Note that many of the steps of guaranteeing space, moving input data, exe-
cuting jobs, moving output data, and terminating reservations, can be encapsu-
lated within a request execution manager such as the Condor Directed-Acyclic-
Graph Manager (DAGMan) (Condor, 2002). Also, higher-level storage re-
source managers such as SRM could use NeST services to synchronize access
between globally-shared storage resources (?).

1. USING NeST SOFTWARE

The NeSTsoftware is available for download here (Bent, 2003). Currently,
NeST builds on both Linux and Solaris platforms. However, the kernel en-
forced lot implementation relies on Linux kernel utilities and is therefore not
available with the Solaris version. Generally, using both the NeST client and
server is comparable to using other file transfer software such as FTP. There-
fore, most of this discussion will focus on using lots as they are a unique feature
of NeST.

7.1 The NeST server

Using the NeST server is straightforward. Since NeST is user-level soft-
ware that doesn’t require any modified kernel patches, it can be installed and
run simply. Please refer to the installation instructions on the webpage (Bent,
2003) for information about enabling the kernel quota system and download-
ing and installing necessary libraries such as the Globus Grid API bundle (prj,
2003). We recommend initially running NeST with the NeST-managed lot
implementation instead of the kernel enforced version because it can be run
without super-user privilege.

7.2 The NeST interactive client and client libraries

Because NeST supports many different protocols, clients can interact with
the NeST server using any of the standard client programs such as GridFTP,
FTP, HTTP and NFS. However, only the native Chirp protocol has lot manage-
ment support. Included with the NeST software is a client library for putting
Chirp protocol requests directly into user software and a thin interactive client
program built from this library. In addition to all of the standard directory and
data transfer operations, these client programs have support for user and group
management as well as lot management. Figures 1.4 and 1.5 show how to use
both the interactive client and the client library for lot management. Note that
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chirp:db16:~johnbent/> lot user 10
Lot Handle - 1

chirp:db16:~ johnbent/> lot stat 1
Lot Handle : 1

Lot Type : Guaranteed

OwnerUser : johnbent

Lot Size : 10.000000 MB

Lot Used : 0.000000 MB ( 0.00%)
Start time : 1/12/2003 12:34:00
Duration : 1440.00 Minutes

Time left : 1440.00 Minutes

chirp:db16:~ johnbent/> lot update 1 0 10

chirp:db16:~ johnbent/> put /usr/share/dict/linux.words
409286 / 409286 (2.56 MB/s)

chirp:db16:~ johnbent/> lot stat 1
Lot Handle : 1

Lot Type : Guaranteed

OwnerUser : johnbent

Lot Size : 10.000000 MB

Lot Used : 0.390326 MB (  3.90\%)
Start time : 1/12/2003 12:34:00
Duration : 1450.00 Minutes

Time left : 1448.72 Minutes

Figure 1.4. Interactive nest-client. This shows one example server-client session using the
provided interactive nest-client program. In this session, a user first creates a lot, then increases
its duration by 10 minutes, writes a file into the lot and then queries the status of the lot.

the Chirp protocol is used in both of these examples for both the lot manage-
ment as well as the data transfer operations. However, in practice many users
might prefer to use Chirp for lot management and then a different protocol
such as GridFTP for the data transfers.

8. RELATED WORK

As a storage appliance, NeST relates most closely to the filers of Net-
work Appliance (Hitz et al., 1994) and the Enterprise Storage Platforms of
EMC (EMC Corporation, 2003). NeST does not attempt to compete with these
commercial offerings in terms of raw performance as it is primarily intended
for a different target domain. As such, NeST offers a low-cost, software-only
alternative that offers more protocol flexibility and Grid-aware features that are
needed to enable scientific computations in the Grid.

Within the Grid community, there are a number of projects that are related to
NeST. GARA (?) is an architecture that provides advance reservations across a
variety of resources, including computers, networks, and storage devices. Like
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#include '"nest_client.h"

void main() {
NestReplyStatus stat;
NestConnection server;
NestLot lot;
NestLotHandle lot_handle;

stat NestOpenConnection( &server, "nest.cs.wisc.edu" );

stat = NestRequestUserLot( &lot_handle, server, 10, 1440 );

stat NestUpdateLot( server, &lot_handle, 0, 10 );

stat = NestSendFile( "/usr/share/dict/linux.words", "words", server );
stat = NestGetLotStat( &lot, server, &lot_handle );

Figure 1.5. Nest-client library. This code sample, (which ignores error-handling for the
sake of brevity), demonstrates the same functionality as shown using the interactive client in
Figure 1.4. This code first connects to a nest server, then creates and updates a lot, writes a file
to it and then queries its status.

NeST, GARA provides reservations (similar to NeST’s lots), but allows users
to make them in advance. However, GARA does not provide the best-effort
lots or the sophisticated user management that NeST provides.

The Disk Resource Managers in SRM (?), the storage depots in IBP (Plank
et al., 2001) and the LegionFS servers (?) also provide Grid storage ser-
vices. However, each of these projects is designed to provide both local storage
management and global scheduling middleware. Conversely, NeST is a local
storage management solution and is designed to integrate into any number of
global scheduling systems. This distinction may account for one key difference
between NeST and the storage servers in each of these systems: as they are all
designed to work primarily with their own self-contained middleware, none
of these other projects have protocol independence in their servers. Another
unique feature of NeST is its dynamic concurrency adaptation; we note how-
ever that this is not intrinsic to the design of NeST and could be incorporated
in these other systems.

SRM and IBP provide space guarantees in manners similar to NeST lots.
One difference however in SRM is that SRM guarantees space allocations for
multiple related files by using two-phased pinning; lots in NeST provide the
same functionality with more client flexibility and control and less implemen-
tation complexity.

In comparing NeST lots with IBP space guarantees, one difference is that
IBP reservations are allocations for byte arrays. This makes it extremely diffi-
cult for multiple files to be contained within one allocation; it can be done but
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only if the client is willing to build its own file system within the byte array.
Another difference is that IBP allows both permanent and volatile allocations.
NeST does not have permanent lots but users are allowed to indefinitely renew
them and best-effort lots are analogous to volatile allocations. However, there
does not appear to be a mechanism in IBP for switching an allocation from
permanent to volatile while lots in NeST switch automatically to best-effort
when their duration expires.

Like NeST, LegionFS also recognizes the importance of supporting the NFS
protocol in order to allow unmodified applications the benefit of using Grid
storage resources. However LegionFS builds this support on the client side
while NeST does so at the server side. LegionFS’s client-based NFS allows
an easier server implementation but makes deployment more difficult as the
Legion-modified NFS module must be deployed at all client locations.

Although NeST is the only Grid storage system that supports multiple pro-
tocols at the server, PFS (Thain and Livny, ) and SRB (Baru et al., 1998)
middleware both do so at the client side. We see these approaches as com-
plementary because they enable the middleware and the server to negotiate
and choose the most appropriate protocol for any particular transfer (e.g., NFS
locally and GridFTP remotely).

9. CONCLUSION

We have presented NeST, an open-source, user-level, software-only storage
appliance. NeST is specifically intended for the Grid and is therefore designed
around the concepts of flexibility, adaptivity, and grid-awareness. Flexibility is
achieved through a virtual protocol layer which insulates the transfer architec-
ture from the particulars of different file transfer protocols. Dynamic adapta-
tion in the transfer manager allows additional flexibility by enabling NeST to
run effectively on a wide range of hardware and software platforms. By sup-
porting key grid functionality such as storage space guarantees, mechanisms
for resource and data discovery, user authentication, and quality of service,
NeST is grid-aware and thereby able to integrate cleanly with distributed com-
puting systems.
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