Migrating Open Science Grid to RPMs®

Alain Roy' on behalf of the Open Science Grid

! Open Science Grid Software Coordinator, University of Wisconsin—Madison, USA
Email: roy@cs.wisc.edu

Abstract. We recently completed a significant transition in the Open Science Grid (OSG) in
which we moved our software distribution mechanism from the useful but niche system called
Pacman to a community-standard native package system, RPM. In this paper we explore some
of the lessons learned during this transition as well as our earlier work, lessons that we believe
are valuable not only for software distribution and packaging, but also for software engineering
in a distributed computing environment where reliability is critical. We discuss the benefits
found in moving to a community standard, including the abilities to reuse existing packaging,
to donate existing packaging back to the community, and to leverage existing skills in the
community. We describe our approach to testing in which we test our software against multiple
versions of the OS, including pre-releases of the OS, in order to find surprises before our users
do. Finally, we discuss our large-scale evaluation testing and community testing, which are es-
sential for both quality and community acceptance.

1. Introduction

In this paper, we describe how, and more importantly why, we changed how we distribute the Open
Science Grid (OSG) [1, 2] software stack from being distributed with a useful but niche system called
Pacman [3] to RPM [4], the widely used native package system that originated with the Red Hat Linux
distribution, but is also used on other Linux variants. (We use the term native package system to mean
the packaging system that is most natural to use on a given platform, generally the same one used by
the operating system installation mechanism.)

The OSG is a multi-disciplinary partnership to federate local, regional, community and national
cyberinfrastructures to help share computing and storage resources of research and academic commu-
nities at all scales. It provides common services and support for more than 100 resource providers and
scientific institutions using a distributed fabric of high-throughput computational services. The OSG
does not own computing resources but provides software and services to users and resource providers
alike to enable the effective use and sharing of their resources based on the principles of Distributed
High Throughput Computer (DHTC). In this paper, we will focus on the OSG Software Stack (also
known as the VDT, or Virtual Data Toolkit), which provides the software to enable the implementa-
tion and use of DHTC services.

The OSG Software Stack provides both computing and storage middleware as well as client access
to these resources. This software is intended for installation by each site’s system administrator for use
by domain scientists, who will use the OSG to run scientific workflows and access data. The stack in-
cludes software to:

" Published in Computing and High Energy Physics (CHEP) 2012.

* accept jobs at a site (i.e., Globus GRAM [5]),

* manage storage resources (Hadoop File System [6], XRootD [7], Bestman [8]),

* manage membership in virtual organizations (VOMS [9]),

* manage authorization at a site (GUMS [10], edg-mkgridmap),

* manage user jobs (Condor [11, 12]), and

* manage pilot jobs (GlideinWMS [13]).

There are many other software packages included as well—this list shows the breadth of included
software.

When we first began distributing software as part of projects that preceded OSG (GriPhyN and
iVDGL [14]), we used Pacman, a packaging system that is used to download, install, and manage
software distributions. Pacman has a number of very desirable features that made it attractive to us,
including the ability to install software as either a privileged user (root) or a regular user; the ability to
install software multiple times in multiple locations; and support for multiple operating systems. This
combination of features allowed us to support a broad mix of users. For example, previous versions of
the software stack supported up to seven operating systems (including Scientific Linux, Mac OS X,
and AIX) on four different architectures (x86, x86-64, IA64, and PowerPC). [15] Also, because soft-
ware installations occur in a single non-system directory, users could backup an installation before
doing an upgrade. If the upgrade was a problem for any reason, they could easily move back to the
previous version. Users would regularly install software once on a shared filesystem to be shared be-
tween computers in a cluster. This combination of features was particularly powerful.

In late 2011, we moved away from Pacman and switched entirely to RPM in order to better meet
the needs of our community (see more below). Earlier we had made forays into the world of RPMs,
but they were unsuccessful. Those efforts attempted to leverage our existing software build mecha-
nisms, and therefore we only produced so-called binary RPMs. RPMs come in two flavors: source and
binary. The community standard is to use source RPMs, which contain both the source code as well as
all the instructions needed to both build and install the software. Our early binary RPMs only allowed
users to install the software, but they could not easily modify or rebuild the software. Therefore this
time we chose to create source RPMs, which allow our RPMs to be easily reused and modified. (See
more details on this in Section 2.) Providing both source and binary RPMs was seen as a significant
improvement by our users.

While as a result of moving to RPMs, we no longer have some of the desirable features of Pacman
(easy rollback, installation on shared filesystems, natural support for wide array of operating systems),
we believe that this move was the right choice for both our users and us.

2. Why move to RPM?

If we lost important technical advantages in using Pacman, why did we switch? The key observation is
that technical superiority is not always the primary reason to choose a solution. Instead, finding a solu-
tion that works well within a community is more important. Understanding the constraints, operations,
and use cases that our community has helped us decide to transition.

The portion of the Linux community that uses RPM (especially Red Hat and clones) has clear
guidelines [16] on the right way to package software. The guidelines include rule such as the need for
anyone to be able to build the software from source, the proper locations for files, the right way to ver-
sion software, and much more.

Pacman’s primary disadvantage is that it is nearly completely unknown outside of our user com-
munity. When an institution hires a new system administrator, there is a good chance that they know
about RPM; if they do not, it is easy to find many books and articles to teach them what they need to
know. [17, 18] However, there is nearly no chance that a new hire will know anything about Pacman,
and there are few community resources to help them.

Perhaps more importantly, it is very hard to share labor with a wider community, which is essential
to our ability to sustain software distributions. For example, if someone creates a new source RPM, it

is usually straightforward to share it with many communities: it can usually be reused with little or no
work. In addition, it is easy for people to learn how to create RPMs due to extensive existing docu-
mentation. However, with Pacman it is not so straightforward. Due to the tight coupling of packages
within a Pacman distribution, it is fairly challenging for one person to create a Pacman package and
have it be easily usable by other groups. Therefore, by providing RPMs that match the community
standards, we gain two significant advantages. First, it is easier for people to donate software packages
to us. Second, it is easier for us to donate software packages to other software distributions (such as
Fedora, Red Hat, or third-party software repositories such as EPEL [19]). When our software packages
become part of these distributions, not only can we continue to maintain them but other people in the
larger Linux community may also help to maintain the software, thus sharing the labor with us. Note
that our earlier efforts with binary RPMs could not benefit from this community effort at all: not only
would they simply not have been accepted as part of other software distributions, but the missing
source code and build instructions prevented anyone else from easily helping, even if they were will-
ing.

There are a few potential downsides to this approach. First, we support a smaller set of operating
systems than we did with Pacman. Today, we only support Red Hat Enterprise Linux and clones (Sci-
entific Linux and CentOS), with some minimal support for Debian Linux. However, in the last several
years the majority of our users have converged on exactly our supported systems. While it would be
nice to support a wider variety of systems (and we may do so in the future), the lack is not inhibiting
most OSG users. If we expand our support to support a wider variety of operating systems, it will take
substantial effort. This is because properly fitting into a community requires understanding that com-
munity deeply. Although packaging systems like RPM and deb (used on Debian Linux) appear super-
ficially similar, there are many differences in the tool chain that is used, the definition of a “good”
package, proper location of files, and many more technical details.

The next downside is the difficulty in using RPMs to install software on a shared filesystem for us-
er in a cluster. While this is certainly true, most sites are already using cluster management software
such as Puppet [20], Chef [21] and CFEngine [22, 23] to manage their sites, including installing
RPMs. Thus, extending their sites to install our software stack via RPM is not a serious difficulty.
There are a few sites that have found it to be a hardship, and for them we are considering alternative
approaches to install a subset of our software (the subset commonly installed on the cluster, called the
worker node software) without the use of RPMs. This would not be a completely new implementation
but would leverage the existence of our RPMs.

It is useful to think about this change, not in terms of RPM and Pacman, but in terms of in terms of
leveraging and sharing with existing communities. When beginning our work on transitioning to
RPMs, we defined our Principle of Community Packaging: [24]

When possible, we should use packages from existing and/or broader communities;
Otherwise we should make our own packages but contribute them back.
Therefore, we should package software only when one of the following is true:

1. The software is not already packaged; or

2. The software is packaged but needs significant changes to be acceptable to our users.

The implied corollary of this principle is that we can do this only when we adopt the same packag-
ing mechanism (in our case RPM) that is used in the wider community.

3. How we build and distribute software

3.1. Building the software

We have chosen to use standard community mechanisms to build our RPMs. Because they are well
described elsewhere, we only describe them briefly here. We use a system called Koji [25] to manage
our builds, which is a standalone build system that allows people to submit source RPMs to be built. It

enforces compliance to some rules, such as not re-using a version number on a package. Internally,
Koji uses other standard mechanisms to build the software. In particular, it creates a chroot [26] envi-
ronment, installs a minimal operating system only the declared pre-requisite software, and converts the
source RPM to a binary RPM with the rpmbuild software. The chroot with minimal OS is important
because it ensures that the RPM declares all needed pre-requisite software: if it is not declared, it will
not be installed and the build will fail.

We have implemented a small layer on top of Koji to help enforce our own internal policies. For
example, we require software builds to be reproducible, so therefore all builds that might be released
to production must be pulled from our Subversion source code repository instead of from a develop-
er’s personal workspace. The source code repository contains the unpatched software source code, any
patches we with to apply to the software, and the RPM’s “spec” file, which is used to create the source
RPM.

3.2. Distributing the software

Users install the OSG software stack with yum [27], the standard mechanism for installing RPMs on
Red Hat-like operating systems. The Koji software also allows us to manage yum software reposito-
ries. We maintain a set of repositories per supported operating system version:

1. osg-development: The “wild west” of our work, where OSG Software Team members can
place software freely without worrying about the impact on users.

2. osg-testing: When the software has had basic internal verification, it can be moved from osg-
development to the osg-testing repository. This is the staging ground for future software re-
leases. Brave early-adopter users may get software from here.

3. osg-release: The current released version of software. Software must have gone through osg-
testing first. This is the standard software repository that most users will use. This repository
contains all the software we have released. Although yum by definition installs the most re-
cent version, users can choose to downgrade to older versions in case of problems.

4. osg-contrib: This is an auxiliary repository for software that the OSG does not fully support
but may be useful to some users. (‘Contrib’ is short for ‘contributed’, since much of the soft-
ware may be contributed by third-parties.) This allows OSG members to quickly share useful
software without going through the usual testing and release processes. It is particularly useful
when the software is meant for a small subset of OSG.

Although our Koji service hosts these yum software repositories, it is not intended to be a highly
available resource. Therefore we mirror the repositories to a central repository hosted by the OSG Grid
Operations Center (GOC), which provides a scalable and highly available service. In addition, users
can make their own mirrors if they want to ensure reliability in the face of network outages or want to
make snapshots of the repository at certain times. Currently three sites provide public mirrors for the
yum repository, which improves the scalability and reliability for all of OSG. Yum, unlike Pacman,
transparently supports the use of mirrors.

0SG Software 0sG Users
Infrastructure Grid Operations

@Submit @Stage @Mirror @ Install or Mirror

N ~— ~—
Pristine Local Public
Sources || Patehes Koji Repo Repo
Build

Subversion repo System

@Build (% @ Complete

Build Workers
(Batlab)

Figure 1: An illustration of the build and distribution process as described in the text. 1. Developers sub-
mit builds to Koji based on unmodified source code and (possibly) patches to the software. 2/3. Koji builds
the binary RPMs from the source RPM and saves information about the build. 4. Koji puts the RPM into
a local yum repository, which is then (5) mirrored to the OSG’s central yum repository. 6. Users can ei-
ther install the RPMs directly from that repository or mirror them to their own local mirrors.

We ensure that every time we modify the osg-release repository we increment the OSG Software
version number and write release notes. [28] Users can feel assured that no changes are made without
this documentation; thus, we provide clarity for our users. The “version number” is a bit odd, because
it covers a set of RPMs, and because users may change the exact set of RPMs they have. For instance
they might have installed, say, OSG 3.1.2, but installed some RPMs from OSG 3.1.0,3.1.1, and 3.1.2.
Therefore the version number refers to the set of RPMs that were provided at the time of the release,
not necessarily the set of RPMs that someone has installed. That is, the version number is primarily a
label that we use to describe the set of RPMs, but users may choose to mix software from different
releases (at their own peril).

In unusual circumstances, users may wish to get exactly the set of RPMs that were in a previous re-
lease. This is hard to do without extensive archaeological work even though all RPMs are available in
the osg-release repository because a user has to know exactly which RPMs should be installed. To
simplify this, we have a set of versioned repositories that have exactly the set of RPMs that were pro-
vided as part of each release. These are not widely used, but are available as a failsafe mechanism
when needed.

When users install the OSG Software, they cannot rely on just our software repositories. Our soft-
ware also requires software available from the standard operating system distribution as well as a
commonly used third-party software distribution called EPEL.

4. How we test software
We have two kinds of software testing that we use to ensure that our releases are of high quality: in-
ternal automated tests and wide-area testing in a testbed.

4.1. Internal daily testing
We do daily, automated tests of the full software stack. These are not unit tests of the sort that devel-
opers create when writing software, but end-to-end functional tests of the entire software stack. For
instance, one test may submit a job from Condor to Globus GRAM, authorize the running of the job
with GUMS, and then run the job with PBS. Given the newness of our conversion to RPMs, we are
still expanding the set of tests but have reasonable coverage to catch basic problems. Currently the
tests are run within a single machine, not across multiple machines. This simplifies the deployment of
tests at the expense of being unable to test more complicated scenarios. However, it is still able to
catch a significant number of problems.

We test various combinations of our software against the operating system. In particular, we test
both the pre-release of our software (from osg-testing, above) and the current release. The purpose of

the pre-release is clear—it allows us to see problems before we release. The reason we test the current
release is to ensure that there are no surprises and that we have not accidentally broken our software
repositories. We also test against a variety of operating systems (Red Hat Enterprise Linux 5 & 6, Sci-
entific Linux 5 & 6, and CentOS 5 & 6) to ensure that there are no subtle differences between plat-
forms. Although Scientific Linux and CentOS are supposed to be compatible rebuilds of Red Hat En-
terprise Linux, we test to ensure there are no problems.” We also plan to start testing soon against pre-
releases of the operating system. This is particularly important to us because we want to discover
problems caused by changes to the operating system before our users do.

Daily emails are sent to all members of the OSG Software Team to notify them of problems. In ad-
dition, the results can be viewed on our website.

Operating System OSG Release
Red Hat Enterprise Linux 5 & 6 Current
Pre-release

CentOS 5 & 6 Current
Pre-release
Scientific Linux 5 & 6 Current

Pre-release

Scientific Linux 5 & 6 pre-release | Current

(planned) Pre-release
Table 1: The software combinations we test against

4.2. Wide-area testing

When we have completed initial verification of internal testing, we proceed to end-to-end testing in a
wide-area testbed. We have created a testbed for this purpose called the Integration Test Bed (ITB).
The ITB is composed of four sites, each maintained independently. The ITB site administrators install
software from the osg-testing repository and run a variety of real jobs in realistic scenarios to ensure
the software works. While we could in theory replace them by automated scripts, they provide valua-
ble insight we do not get from automated testing. They complain (sometimes loudly) when there are
inconveniences in the software installation or the software has bugs we missed in internal testing. Be-
cause they are also administrators for production sites, they provide valuable insight and help us avoid
problems that would aggravate many users before we ship the final release.

In addition to basic verification of the software, we also run actual scientific workflows through the
testbed, to ensure that end-user needs will be met. While we do not require all scientific workflows to
be run for all releases, we do run them for major upgrades.

While there is a core of four regular sites in the ITB, we will occasionally gather more sites for our
significant updates. For example, the initial release of RPMs involved significantly more sites who
provided testing and feedback.

Only after the testing has completed do we release the software stack be to production (the osg-
release software repository). The time from building the software to the time it is deployed on users
sites can vary considerably depending on the complexity of the software. In some cases, such as urgent
security releases, it can happen in a week or less, while in other cases considerable testing may be
done and it may take months.

5. Future Work and Conclusions

The RPM-based OSG Software Stack has been in production release on RHEL 5 (and clones) since
December 2011. We added support for RHEL 6 (and clones) in April 2012. In the future we will add
software and new operating support to support our users.

"To date, we have not found any incompatibilities.

There is one particularly important lesson to draw from this paper:

Lesson: When there is a strong community standard, it is often wise to follow the standard even if
you have an alternate solution that may be technically better. While not always true (there is often a
need for disruptive technologies!), in the case of software packaging we were able to better leverage
the existing community packages as well as the skills of people by adopting the community standard.
This allowed us to focus our time and energy on other aspects of our work (testing, user support, doc-
umentation, etc.) that are more central to our mission.

6. Acknowledgements
Thanks to the entire OSG Software Team, who worked so hard on this transition. They are: Tim Cart-
wright, Scot Kronenfeld, Terrence Martin, Matyas Selmeci, Neha Sharma, Igor Sfiligoi, Doug Strain,
Suchandra Thapa, and Xin Zhao. Significant contributions were also made by Dave Dykstra, Tanya
Levshina, and Marco Mambelli. Brian Bockelman and Derek Weitzel were instrumental in both kick-
ing off the transition and guiding us through the technical processes. The Build and Test Facility at the
University of Wisconsin—-Madison’s Center for High-Throughput Computing provided the installation
an support for our Koji service. The OSG Operations Team, particularly Soichi Hayashi, set up our
central yum repository and dealt with regular requests when we changed our mind in how it was set
up. Chander Sehgal and Dan Fraser and the OSG Executive Team provided management consulting.
Fermi National Laboratory provided the FermiCloud service that allowed the OSG Software Team
members to use virtual machines to develop and test. And, of course, we could not have done any of
this work without the vibrant Linux open source community that provided so many excellent tools.
The Open Science Grid is funded by the National Science Foundation and the Office of Science,
Department of Energy.

References

[1] M. Altunay, B. Bockelman, and R. Pordes, “Open Science Grid”, available from http://osg-

docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=800
[2] Open Science Grid web site: http://www.opensciencegrid.org/
[3] Pacman web site: http://atlas.bu.edu/~youssef/pacman/
[4] http://en.wikipedia.org/wiki/RPM_Package Manager
[5] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke, “A
Resource Management Architecture for Metacomputing Systems”. In Proc. IPPS/SPDP '98
Workshop on Job Scheduling Strategies for Parallel Processing, pg. 62-82, 1998.
HDFS Web Site: http://hadoop.apache.org/hdfs/
XRootD web site: http://xrootd.slac.stanford.edu/
Bestman web site: https://sdm.lbl.gov/bestman/
R. Alfieri, R. Cecchini, V. Ciaschini, and F. Spataro, “From gridmap-file to VOMS: managing
authorization in a Grid environment”, Future Generation Computer Systems, pg. 549-558,
2005.
[10] GUMS web site: https://www racf.bnl.gov/Facility/GUMS/1.3/index.html
[11] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Practice: The Condor
Experience”, Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4,
pages 323-356, February-April, 2005.

[12] M. Litzkow, M. Livny, and M. Mutka, “Condor—A Hunter of Idle Workstations”, Proceedings
of the 8th International Conference of Distributed Computing Systems, pages 104-111, June,
1988.

[13] 1. Sfiligoi, D. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wuithwein, “The Pilot
Way to Grid Resources Using glideinWMS,” Proceedings of the 2009 WRI World Congress
on Computer Science and Information Engineering - 2 (2009): 428-432.
doi:10.1109/CSIE.2009.950.

[14] P. Avery, K. Baker, R. Baker, J. Huth, R. Moore, “An International Virtual-Data Grid

Laboratory for Data Intensive Science”, 2001.

VDT 1.10.1 system requirements web page:
http://vdt.cs.wisc.edu/releases/1.10.1/requirements.html

Fedora Packaging Guidelines: http://fedoraproject.org/wiki/Packaging:Guidelines

Fedora RPM Guide: http://docs.fedoraproject.org/en-
US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html

Maximum RPM: http://www rpm.org/max-rpm/

Extra Packages for Enterprise Linux (EPEL): http://fedoraproject.org/wiki/EPEL

Puppet web site: http://puppetlabs.com/

Chef web site: http://www.opscode.com/chef/

M. Burgess, “CFEngine: a site configuration engine”, USENIX Computing systems, Vol8, No. 3
1995.

CFEngine web site: http://cfengine.com/

A. Roy, T. Cartwright, et. al. “Community Packaging: A Proposal”, available from
https://twiki.grid.iu.edu/bin/view/SoftwareTeam/CommunityPackagingProposal

Koji web site: http://fedoraproject.org/wiki/Koji

Description of chroot from Wikipedia: http://en.wikipedia.org/wiki/Chroot

Yum Package Manager web site: http://yum.baseurl.org/

OSG Software 3 Release Notes: https://twiki.grid.iu.edu/bin/view/Documentation/Release3/

